S3 Mathematics Page 1 of 19 pages

FUKIEN SECONDARY SCHOOL

S3 First Term Examination (2020-2021)

Mathematics (2 hours)

Date:	4 th January 2021	Name:	Name:		
	·				
Time:	10:00 a.m 12:00 nn	Class:	No.:		

Instructions to students:

- 1. This paper consists of THREE parts, Conventional Questions, Multiple-choice Questions and Bonus Question. There are Section A(1), Section A(2) and Section B in Conventional Questions. Section A(1) carries 30 marks, Section A(2) carries 32 marks, Section B carries 18 marks, Multiple-choice Questions carry 20 marks and Bonus Question carries 5 marks.
- 2. The maximum score of this paper is 100.
- 3. Attempt ALL questions in Conventional Questions and Multiple-choice Questions. Write your answers in the spaces provided in this Question / Answer Book.
- 4. Unless otherwise specified, all workings must be clearly shown.
- 5. Unless otherwise specified, numerical answers should either be exact or correct to 3 significant figures.
- 6. The diagrams in this paper are not necessarily drawn to scale.

Section A (1) (30 marks)

1.	Make b the subject of the formula $\frac{5a+6b-9}{b} = 8$.	
		(3 marks)
2.	(a) Find the range of values of x which satisfies $\frac{11x-19}{5} > x-11$.	
	(b) Write down the smallest integer satisfying the inequality in (a).	(3 marks)
		(5 marks)

3	Factorize	
٥.	(a) $x^3 + x^2y - 7x^2$,	
	(b) $x^3 + x^2y - 7x^2 - x - y + 7$.	(3 marks)

S3 Mathematics Page 3 of 19 pages

4. Figure 1 shows a regular tetrahedron *ABCD*, where *DQ* is the height of *ABCD*, $AB \perp DM$ and $AB \perp CM$.

- (a) (i) Name the projection of DM on plane ABC.
 - (ii) Name the angle between DM and plane ABC.
- (b) Name the angle between planes *DAB* and *ABC*.

	A = = C	(3 marks)
	$M = Q$ $B \qquad \qquad \text{Figure 1}$	
5.	(a) Convert 108 into a binary number.	
υ.	(b) Convert 31E ₁₆ into a denary number.	
		(4 marks)

(4 marks)

- 6. Figure 2 shows a regular pyramid *VABCD* with a square base *ABCD*.
 - (a) Find VO.
 - (b) Hence, find the volume of the pyramid.

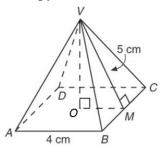


Figure 2

- 7. Simplify the following expressions and express your answer with positive indices.
 - (a) $\frac{(m^8n^7)^2}{m^7n^{-5}}$
 - (b) $\left(\frac{-3a^3b^0}{a^{-1}b^{-3}}\right)^{-3}$.

(5)	marks)

S3 Mathematics Page 5 of 19 pages

8. In Figure 3, D and E are points on AC and BC respectively such that DE is the perpendicular bisector of BC in $\triangle ABC$. It is given that $AB \perp AC$. If $\angle DBE = 4 \angle ABD$, find $\angle ACB$.

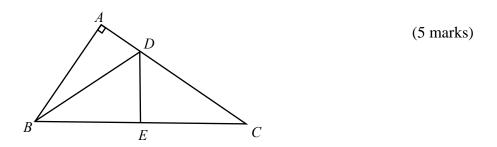


Figure 3

Section A (2) (32 marks)

- 9. Let $E = \frac{2^{3n+1} \times 8^{2n-1}}{4^{3n+2}}$.
 - (a) If $E = 2^{an+b}$, where a and b are constants, find a and b.
 - (b) Given that E=1, find n.

(5 marks)

- 10. Solve each of the following inequalities.
 - (a) 3x-5(2-x)>4(3x-1),
 - (b) $\frac{3(21-x)}{2} \frac{x+20}{7} \le 4$.

(5 marks)	

S3 Mathematics Page 8 of 19 pages

11. Figure 4 shows a quadrilateral *ABCD*. $\angle DAC = \angle DBC$, *AD* // *BC* and *AC* intersects *BD* at *E*.

- (a) Prove that $\triangle AED$ and $\triangle BCE$ are isosceles triangles.
- (b) If AE is the median of $\triangle ABD$, prove that $\angle BAD = 90^{\circ}$.

(5 marks)

Figure 4

S3 Mathematics Page 9 of 19 pages

12. Tina is going to bake at least 570 cookies for a wedding party using ovens A and B. The number of cookies baked by oven A per hour is 10 more than twice the number of cookies baked by oven B per hour.

(a)	If 40 cookies can be baked by oven B in an hour and oven B can only operate for 3 hours,
	at least how many hours has oven A operated for?

(b)	If both ovens A and B can only operate for 4 hours, at least how many cookies should be baked by oven B in an hour?			
	(5 marl			

S3 Mathematics Page 10 of 19 pages

13. Sandy has a paper sector AOB as shown in Figure 5. The radius of the sector is 17 cm. Reflex $\angle AOB = 216^{\circ}$. By joining OA and OB together, the sector is folded to form a right circular cone.

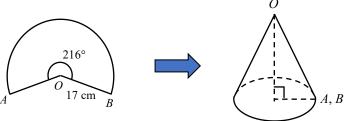


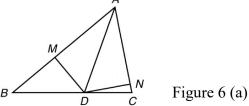
Figure 5

(a)	Find the	base ra	adius of the con	e.	
		_	0.4	_	

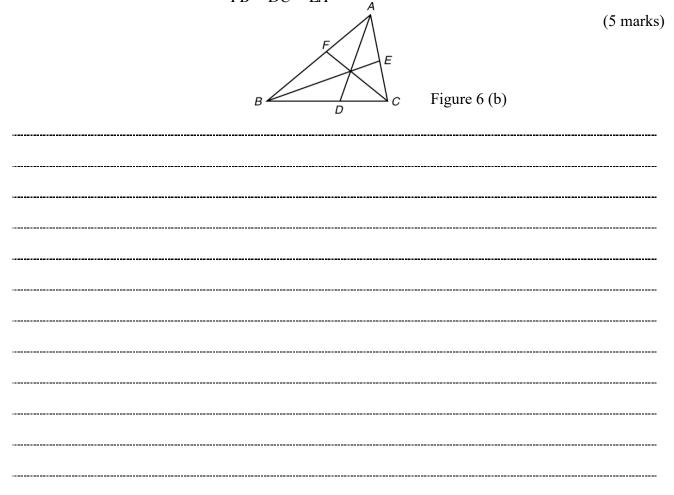
(b) Find the volume of the cone, correct to the nearest integer.	
	(6 marks)

S3 Mathematics Page 11 of 19 pages

14. The mean, the median and the mode of the test scores of a group of students are 72 marks, 70 marks and 66 marks respectively. Due to the mistake in a question, 8 marks will be added to each test paper.


- (a) Find the new mean, the new median and the new mode of the test score of the group of students.
- (b) Later, a student who scores 80 marks in the test is found cheating in the test. His test score is discarded. Will the mean, the median and the mode of the test scores of the group of students increase, decrease or remain unchanged?

6 marks
·
·
·


(6 marks)

Section B (18 marks)

- 15. (a) In Figure 6 (a), AD is the angle bisector of $\angle BAC$ in $\triangle ABC$. MD is the altitude of AB in $\triangle ABD$ and ND is the altitude of AC in $\triangle ACD$.
 - Prove that $\frac{\text{area of } \triangle ABD}{\text{area of } \triangle ACD} = \frac{BD}{DC}$.
 - (ii) Prove that $\triangle AMD \cong \triangle AND$ and hence, prove that $\frac{BD}{DC} = \frac{AB}{AC}$.

- (b) In Figure 6 (b), BE and CF are the two angle bisectors of $\triangle ABC$.
 - By using the result of (a), express $\frac{AF}{FB}$ and $\frac{CE}{EA}$ in terms of AB, AC and BC.
 - (ii) Find the value of $\frac{AF}{FB} \times \frac{BD}{DC} \times \frac{CE}{EA}$.

S3 Mathematics	Page 13 of 19 pages

S3 Mathematics Page 14 of 19 pages

16. In Figure 7, the frustum of height 9 cm is made by cutting off a right circular cone of base radius 5 cm from a right circular cone of base radius 20 cm. A container is formed by combining the frustum and a cylinder of base radius 20 cm and height 9 cm.

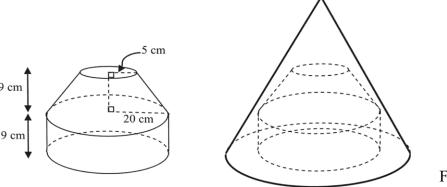


Figure 7

(a) Express the volume of the container in terms of π .

(4 marks)

(b) Someone claims that an empty circular cone of base radius 40 cm and height 19 cm can totally hide the container in (a). Do you agree? Explain your answer.

(3 marks)

S3 Mathematics	Page 15 of 19 pages

Multiple-choice Questions (20 marks)

Write down the best answer for each question into the boxes.

17	18	19	20	21	22	23	24	25	26

- 17. $2^{10} + 2^8 + 2^6 + 5 =$
 - A. 1010100001₂.
 - B. 1010100011₂.
 - C. 10101000101₂.
 - D. 10101000011₂.
- 18. Consider the following integers:

Let a, b and c be the mean, the median and the mode of the above integers respectively.

If $5 \le k \le 7$, which of the following must be true?

- I. a > b
- II. a > c
- III. b > c
- A. II only
- B. III only
- C. I and III only
- D. II and III only
- 19. Consider the following net as shown in Figure 8.

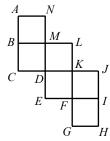


Figure 8

If the net is folded into a cube, which of the following vertices will coincide with B?

- A. *D*
- B. *E*
- C. *K*
- D. *H*

20. Figure 9 shows the 2-D representations of a solid from various views.

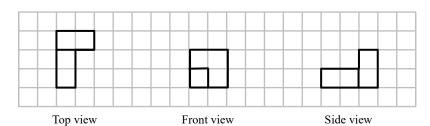
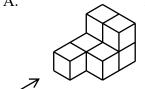
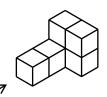



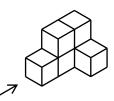
Figure 9


Which of the following could be the solid?

A.

В.

Front



C.

Front

D.

Front

21. In Figure 10, PQ is an axis of rotational symmetry of the given solid. What is the order of rotational symmetry for PQ?

- A. 6
- B. 8
- C. 10
- D. 12

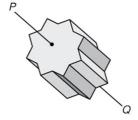


Figure 10

22. If m > n and k < 0, which of the following must be true?

- I. $m^3 > n^3$
- II. $\frac{m}{k^3} < \frac{n}{k^3}$
- III. m + nk < n + mk
- A. I and II only
- В. I and III only
- C. II and III only
- D. I, II and III

- 23. In Figure 11, AD and BE are two altitudes of $\triangle ABC$. Which of the following must be true?
 - I. If AD = CD, then BE = CE.
 - II. $\triangle ADC \sim \triangle BEC$
 - III. O is the incentre of $\triangle ABC$.
 - A. II only
 - B. I and II only
 - C. II and III only
 - D. I, II and III

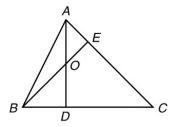


Figure 11

- 24. $0.000\ 050\ 987 \times 10^2 =$
 - A. 5.09×10^{-3} (cor. to 3 sig. fig.).
 - B. 5.10×10^{-3} (cor. to 3 sig. fig.).
 - C. 5.10×10^7 (cor. to 3 sig. fig.).
 - D. 5.1×10^7 (cor. to 1 d.p.).
- 25. The following table shows the marks of Amy and Billy in different papers of an English examination.

Paper	Comprehension	Composition	Oral
Amy	65	70	60
Billy	67	60	62
Weight	50%	30%	20%

Which of the following is/are true?

- I. Amy has a higher mean mark than Billy has.
- II. Amy has a higher weighted mean mark than Billy has.
- III. Amy's weighted mean mark is higher than her mean mark.
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- 26. The ratio of the base radius and the height of a right cylinder is 3 : 2. The radius of a hemisphere is twice the base radius of the cylinder. Find the ratio of the total surface area of the cylinder to that of the hemisphere.
 - A. 5:18
 - B. 5:12
 - C. 1:9
 - D. 1:6

S3 Mathematics Page 19 of 19 pages

Bonus Question (5 marks)					
27.	(a)	Expand $(x-1)(1+x+x^2++x^n)$, where n is a positive integer greater			
		than 3 and $x \neq 1$.			
	(b)	Hence, find the value of $1+2+2^2++2^{64}$.			
	()	(Give your answer in scientific notation and correct to 3 significant figures.)			